protein restricted diet
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 22)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Irem Sepil ◽  
Jennifer C. Perry ◽  
Alice Dore ◽  
Tracey Chapman ◽  
Stuart Wigby

AbstractBiased population sex ratios can alter optimal male mating strategies, and allocation to reproductive traits depends on nutrient availability. However, there is little information on how nutrition interacts with sex ratio to influence the evolution of pre-copulatory and post-copulatory traits separately. To address this omission, here we test how male mating success and reproductive investment evolve under varying sex ratios and adult diet in Drosophila melanogaster using an experimental evolution approach. We found that sex ratio and nutrient availability interacted to determine male pre-copulatory performance. Males from female-biased populations were slow to mate when they evolved on a protein-restricted diet. On the other hand, we found direct and non-interacting effects of sex ratio and nutrient availability on post-copulatory success, without interactions between them. Males that evolved on a protein-restricted diet were poor at suppressing female remating. Males that evolved under equal sex ratios fathered more offspring and were better at supressing female remating, relative to males from male-biased or female-biased populations. These results support the idea that sex ratios and nutrition interact to determine the evolution of pre-copulatory mating traits, but independently influence the evolution of post-copulatory traits.


JIMD Reports ◽  
2021 ◽  
Author(s):  
Birgitta Olsson ◽  
Lakshminarayan Ranganath ◽  
Jean‐Baptiste Arnoux ◽  
Richard Imrich ◽  
Anna Milan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Hongjie Luo ◽  
Wanqing Zhu ◽  
Xiaoqin Yuan ◽  
Jianchun Shao

A 6-week feeding strategy experiment was conducted to investigate the effects of time-dependent protein restriction and subsequent recovery on shrimp. Diets with protein levels of 43 and 36% were used as adequate and restricted diets, respectively. Shrimp with an initial body weight of 6.52 ± 0.46 g were given four feeding strategies: feeding on an adequate diet for six weeks (T1, the control), having protein-restricted diet in weeks 1 and 4 (T2), being given a protein-restricted diet in weeks 1, 3, and 5 (T3), and having protein-restricted diet in weeks 1, 2, 4, and 5 (T4). WG, SGR, FE, and PER of shrimp in T1–T3 showed no significant difference (P > 0.05), these indicators of T4 were significantly reduced (P < 0.05). No significant differences were found in digestive enzyme activities of shrimp among all treatments (P > 0.05). Crude protein content of shrimp muscle in T4 was lower than that of T1–T3. The expression level of tor in T4 was lower than that in other treatments, while 4e-bp was higher than that of other treatments. To balance saving on feeding cost and growth performance, giving the shrimp a protein-restricted diet for 1 week with subsequent refeeding (T2 and T3) is suitable for shrimp under high-density conditions.


Author(s):  
Victoria H.J. Roberts ◽  
Jessica E. Gaffney ◽  
Terry K. Morgan ◽  
Antonio E. Frias

Abstract We previously demonstrated decreased placental perfusion, reduced amniotic fluid protein content, and increased pregnancy loss in a nonhuman primate model of gestational protein restriction. Here, our objective was to link these detrimental findings with a functional placental assessment. As blood flow is critical to maternal-fetal exchange, we hypothesized that a protein-restricted diet would impair placental taurine uptake. Pregnant rhesus macaques were maintained on either control chow (CON, n = 5), a 33% protein-restricted diet (PR33, n = 5), or a 50% PR diet (PR50, n = 5) prior to and throughout pregnancy. Animals were delivered on gestational day 135 (G135; term is G168). Taurine activity was determined in fresh placental villous explants. Taurine transporter (TauT) protein expression, placental growth factor (PLGF), and insulin-like growth factor (IGF)-1 and IGF-2 protein concentrations were measured, and histological assessment was performed. Fetal body weights and placental weights were comparable between all three groups at G135. Placental taurine uptake was decreased in PR33- and PR50-fed animals compared to CON, yet TauT expression was unchanged across groups. PLGF was significantly increased in PR50 vs. CON, with no change in IGF-1 or IGF-2 expression in placental homogenate from PR-fed animals. Accelerated villous maturation was observed in all PR50 cases, three of five PR33, and was absent in CON. We demonstrate conserved fetal growth, despite a decrease in placental taurine uptake. Increased expression of PLGF and expansion of the syncytiotrophoblast surface area in the severely protein-restricted animals suggest a compensatory mechanism by the placenta to maintain fetal growth.


2020 ◽  
Vol 22 (8) ◽  
pp. 1278-1285
Author(s):  
Ayla Coussa ◽  
Maya Bassil ◽  
Réjeanne Gougeon ◽  
Errol B. Marliss ◽  
José A. Morais

Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 330 ◽  
Author(s):  
Duaa W. Al-Sadeq ◽  
Gheyath K. Nasrallah

Homocystinuria is an inborn error of metabolism due to the deficiency in cystathionine beta-synthase (CBS) enzyme activity. It leads to the elevation of both homocysteine and methionine levels in the blood and urine. Consequently, this build-up could lead to several complications such as nearsightedness, dislocated eye lenses, a variety of psychiatric and behavioral disorders, as well as vascular system complications. The prevalence of homocystinuria is around 1/200,000 births worldwide. However, its prevalence in the Gulf region, notably Qatar, is exceptionally high and reached 1:1800. To date, more than 191 pathogenic CBS mutations have been documented. The majority of these mutations were identified in Caucasians of European ancestry, whereas only a few mutations from African-Americans or Asians were reported. Approximately 87% of all CBS mutations are missense and do not target the CBS catalytic site, but rather result in unstable misfolded proteins lacking the normal biological function, designating them for degradation. The early detection of homocystinuria along with low protein and methionine-restricted diet is the best treatment approach for all types of homocystinuria patients. Yet, less than 50% of affected individuals show a significant reduction in plasma homocysteine levels after treatment. Patients who fail to lower the elevated homocysteine levels, through high protein-restricted diet or by B6 and folic acid supplements, are at higher risk for cardiovascular diseases, neurodegenerative diseases, neural tube defects, and other severe clinical complications. This review aims to examine the mutations spectrum of the CBS gene, the disease management, as well as the current and potential treatment approaches with a greater emphasis on studies reported in the Middle East and North Africa (MENA) region.


Sign in / Sign up

Export Citation Format

Share Document