glycan type
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Réka Mócsai ◽  
Hanspeter Kaehlig ◽  
Markus Blaukopf ◽  
Johannes Stadlmann ◽  
Paul Kosma ◽  
...  

Microalgae of the Chlorella clade are extensively investigated as an environmentally friendly source of renewable biofuels and high-value nutrients. In addition, essentially unprocessed Chlorella serves as wholesome food additive. A recent study on 80 commercial Chlorella preparations revealed an unexpected variety of protein-linked N-glycan patterns with unprecedented structural features, such as the occurrence of arabinose. Two groups of products exhibited a characteristic major N-glycan isobaric to the Man2GlcNAc2XylFuc N-glycan known from pineapple stem bromelain, but tandem mass spectrometry (MS/MS) analysis pointed at two types of N-glycan different from the bromelain structure, as well as from each other. Here we report the exact structures of these two novel N-glycan structures, elucidated by nuclear magnetic resonance spectroscopy and MS/MS, as well as on their phylogenetic context. Despite their humble size, these two N-glycans exhibited a very different design with structural features unrelated to those recently described for other Chlorella-clade strains. The major glycans of this study presented several novel structural features such as substitution by arabinose or xylose of the internal N-acetylglucosamine, as well as methylated sugars. ITS1-5.8S-ITS2 rDNA barcode analyses revealed that the xylose-containing structure derived from a product primarily comprising Scenedesmus species, and the arabinose-containing glycan type related to Chlorella species (SAG211-34 and FACHB-31) and to Auxenochlorella. This is another example where characteristic N-glycan structures distinguish phylogenetically different groups of microalgae.


2021 ◽  
Author(s):  
Johannes Helm ◽  
Clemens Gruenwald-Gruber ◽  
Andreas Thader ◽  
Jonathan Urteil ◽  
Johannes Fuehrer ◽  
...  

The importance of protein glycosylation in the biomedical field demands for methods capable of resolving and identifying isomeric structures of N-glycans. However, the unambiguous identification of isomeric structures from complex mixtures is currently not reasonably realized even by the most sophisticated approaches. Here we present a novel approach which uses stable isotope labelled reference N-glycans to establish a retention time grid (glyco-TiGr) on porous graphitized carbon. This furthermore enables retention as the primary criterion for the structural assignment of isomeric N-glycans. Moreover, we biosynthesized forty natural isomers of the fundamental N-glycan type consisting of five hexoses, four N-acetylhexosamines and one fucose residue. Nearly all of these isomers occupied unique positions on the retention time grid. Reference glycan assisted retention time determination with deci-minute accuracy narrowed the assignment space to very few, often only one possible glycan isomer. Application of the glyco-TiGr approach revealed yet undescribed isomers of Lewis x determinants in multimeric human IgA and hybrid type N-glycans in human brain with galactose and even fucose linked to the bisecting N-acetylglucosamine. Thus, the brain N-glycome displayed a degree of sophistication commensurate with this organ's role.


2019 ◽  
Vol 92 (1) ◽  
pp. 1618-1627
Author(s):  
Henghui Li ◽  
Leyuan Li ◽  
Kai Cheng ◽  
Zhibin Ning ◽  
Janice Mayne ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Henghui Li ◽  
Leyuan Li ◽  
Kai Cheng ◽  
Zhibin Ning ◽  
Janice Mayne ◽  
...  

ABSTRACTGlycosylation is one of the most important post-translational modifications in biological systems. Current glycoproteome methods mainly focus on qualitative identification of glycosylation sites or intact glycopeptides. However, the systematic quantitation of glycoproteins has remained largely unexplored. Here, we developed a chemoenzymatic method to quantitatively investigate N-glycoproteome based on the N-glycan types. Taking advantage of the specificity of different endoglycosidases and isotope dimethyl labeling, six N-glycan types of structures linked on each glycopeptide, including high-mannose/hybrid, bi-antennary and tri-antennary with/without core fucose, were quantified. As a proof of principle, the glycoproteomic N-glycan type quantitative (glyco-TQ) method was first used to determine the N-glycan type composition of immunoglobulin G1 (IgG1) Fc fragment. Then we applied the method to analyze the glycan type profile of proteins in the breast cancer cell line MCF7, and quantitatively revealed the N-glycan type micro-heterogeneity at both the glycopeptide and glycoprotein levels. The novel quantitative strategy to evaluate the relative intensity of the six states of N-glycan type glycosylation on each site provides a new avenue to investigate function of glycoproteins in broad areas, such as cancer biomarker research, pharmaceuticals characterization and anti-glycan vaccine development.


Sign in / Sign up

Export Citation Format

Share Document