cloudless atmosphere
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Abdelmoula Ben-tayeb ◽  
Mohammed Diouri ◽  
Rajae Meziane ◽  
Hanae Steli ◽  
Nadia Yousra Meziani

2018 ◽  
Vol 10 (11) ◽  
pp. 1698 ◽  
Author(s):  
Leonid Katkovsky ◽  
Anton Martinov ◽  
Volha Siliuk ◽  
Dimitry Ivanov ◽  
Alexander Kokhanovsky

Atmospheric correction is a necessary step in processing data recorded by spaceborne sensors for cloudless atmosphere, primarily in the visible and near-IR spectral range. In this paper we present a fast and sufficiently accurate method of atmospheric correction based on the analytical solutions of radiative transfer equation (RTE). The proposed analytical equations can be used to calculate the spectrum of outgoing radiation at the top boundary of the cloudless atmosphere. The solution of the inverse problem for finding unknown parameters of the model is carried out by the method of non-linear least squares (Levenberg-Marquardt algorithm) for an individual selected pixel of the image, taking into account the adjacency effects. Using the found parameters of the atmosphere and the average surface reflectance, and also assuming homogeneity of the atmosphere within a certain area of the hyperspectral image (or within the whole frame), the spectral reflectance at the Earth’s surface is calculated for all other pixels. It is essential that the procedure of the numerical simulation using non-linear least squares is based on the analytical solution of the direct transfer problem. This enables fast solution of the inverse problem in a very short calculation time. Testing of the method has been performed using the synthetic outgoing radiation spectra at the top of atmosphere, obtained from the LibRadTran code. In addition, we have used the spectra measured by the Hyperion. A comparison with the results of atmospheric correction in module FLAASH of ENVI package has been performed. Finally, to validate data obtained by our method, a comparative analysis with ground-based measurements of the Radiometric Calibration Network (RadCalNet) was carried out.


Author(s):  
Leonid Katkovsky ◽  
Anton Martinov ◽  
Volha Siliuk ◽  
Dimitry Ivanov ◽  
Alexander A. Kokhanovsky

Atmospheric correction is a necessary step in image processing data and spectra recorded by spaceborne sensors for pure cloudless atmosphere, primarily in the visible and near-IR spectral range. We have present a fast and sufficiently accurate method of atmospheric correction based on the proposed analytical solutions describing with high accuracy the spectrum of outgoing radiation at the top boundary of the cloudless atmosphere. This technique includes the model of the atmosphere and its optical parameters that are important in terms of radiation transfer. The solution of the inverse problem for finding unknown parameters of the model is carried out by the method of non-linear least squares (Levenberg-Marquardt algorithm) for an individual selected pixel of the image (its spectrum), taking into account the adjacency effects. Using the found parameters of the atmosphere and the average surface albedo, assuming homogeneity of the atmosphere within a certain area of the hyperspectral image (or the whole frame), the spectral albedo at the Earth's surface is calculated for all other pixels. It is essential that the procedure of the numerical simulation with non-linear least squares of the direct transfer problem is based on using analytical solutions, which provides a very short calculation time of the atmospheric parameters (seconds or less) and the ability to perform atmospheric correction "on-fly." Testing methods of atmospheric correction was performed using the synthetic outgoing radiation spectra at the top of the atmosphere (TOA), obtained by numerical simulation in the LibRadTran code, as well as spectra of real space images of the Hyperion hyperspectrometer. A comparison with the results of atmospheric correction in module FLAASH of ENVI package has been performed. Finally, to validate our data obtained by the SHARK method, a comparative analysis with ground-based measurements of Radiometric Calibration Network (RadCalNet) was carried out.


Author(s):  
Leonid Katkovsky ◽  
Anton Martinov ◽  
Volha Siliuk ◽  
Dimitry Ivanov ◽  
Alexander A. Kokhanovsky

Atmospheric correction is a necessary step in image processing data and spectra recorded by spaceborne sensors for pure cloudless atmosphere, primarily in the visible and near-IR spectral range. We have present a fast and sufficiently accurate method of atmospheric correction based on the proposed analytical solutions describing with high accuracy the spectrum of outgoing radiation at the top boundary of the cloudless atmosphere. This technique includes the model of the atmosphere and its optical parameters that are important in terms of radiation transfer. The solution of the inverse problem for finding unknown parameters of the model is carried out by the method of non-linear least squares (Levenberg-Marquardt algorithm) for an individual selected pixel of the image (its spectrum), taking into account the adjacency effects. Using the found parameters of the atmosphere and the average surface albedo, assuming homogeneity of the atmosphere within a certain area of the hyperspectral image (or the whole frame), the spectral albedo at the Earth's surface is calculated for all other pixels. It is essential that the procedure of the numerical simulation with non-linear least squares of the direct transfer problem is based on using analytical solutions, which provides a very short calculation time of the atmospheric parameters (seconds or less) and the ability to perform atmospheric correction "on-fly." Testing methods of atmospheric correction was performed using the synthetic outgoing radiation spectra at the top of the atmosphere (TOA), obtained by numerical simulation in the LibRadTran code, as well as spectra of real space images of the Hyperion hyperspectrometer. A comparison with the results of atmospheric correction in module FLAASH of ENVI package has been performed. Finally, to validate our data obtained by the SHARK method, a comparative analysis with ground-based measurements of Radiometric Calibration Network (RadCalNet) was carried out.


Author(s):  
Dimitry Ivanov ◽  
Leonid Katkovsky ◽  
Anton Martinov ◽  
Volha Siliuk ◽  
Alexander Kokhanovsky

Atmospheric correction is a necessary step in image processing data and spectra recorded by spaceborne sensors for pure cloudless atmosphere, primarily in the visible and near-IR spectral range. We have present a fast and sufficiently accurate method of atmospheric correction based on the proposed analytical solutions describing with high accuracy the spectrum of outgoing radiation at the top boundary of the cloudless atmosphere. This technique includes the model of the atmosphere and its optical parameters that are important in terms of radiation transfer. The solution of the inverse problem for finding unknown parameters of the model is carried out by the method of non-linear least squares (Levenberg-Marquardt algorithm) for an individual selected pixel of the image (its spectrum), taking into account the adjacency effects. Using the found parameters of the atmosphere and the average surface albedo, assuming homogeneity of the atmosphere within a certain area of the hyperspectral image (or the whole frame), the spectral albedo at the Earth's surface is calculated for all other pixels. It is essential that the procedure of the numerical simulation with non-linear least squares of the direct transfer problem is based on using analytical solutions, which provides a very short calculation time of the atmospheric parameters (seconds or less) and the ability to perform atmospheric correction "on-fly." Testing methods of atmospheric correction was performed using the synthetic outgoing radiation spectra at the top of the atmosphere (TOA), obtained by numerical simulation in the LibRadTran code, as well as spectra of real space images of the Hyperion hyperspectrometer. A comparison with the results of atmospheric correction in module FLAASH of ENVI package has been performed. Finally, to validate our data obtained by the SHARK method, a comparative analysis with ground-based measurements of Radiometric Calibration Network (RadCalNet) was carried out.


2017 ◽  
Vol 53 (9) ◽  
pp. 918-923 ◽  
Author(s):  
D. N. Troshkin ◽  
N. N. Bezuglova ◽  
M. V. Kabanov ◽  
V. E. Pavlov ◽  
K. I. Sokolov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document