massive tree
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 2)

2022 ◽  
Vol 14 (2) ◽  
pp. 794
Author(s):  
Atif Mustafa ◽  
Majida Kazmi ◽  
Hashim Raza Khan ◽  
Saad Ahmed Qazi ◽  
Sarosh Hashmat Lodi

Globally, universities are evaluating and targeting to reduce their carbon emissions and operate on a sustainable basis. The overall aim of this study revolves in addressing the following three questions: (1) How to calculate carbon footprint, including indicators selection, criteria, and measurement, for higher education institutions? (2) How to evaluate impact and effectiveness of various mitigation strategies in context of a higher education institution? (3) What are the possible limitations of approach selected for carbon footprint calculation. This paper presents estimation of the carbon footprint of NED University using a carbon calculator along with the identification of sources with maximum contribution to its carbon footprint. The carbon footprint of the NED University main campus for 2017 was calculated to be approximately 21,500 metric tons of equivalent CO2 and carbon footprint per student was 1.79 metric tons of equivalent CO2. Scope 1 and Scope 2 emissions each contributed nearly 7% of the carbon footprint, while Scope 3 emissions accounted for 85.6% of the carbon footprint. Major interventions such as switching to renewables, usage of energy efficient appliances, electric vehicles, and massive tree plantation inside and outside the campus were identified as the most effective mitigation strategies.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Fiona K. Seibold ◽  
Stijn J. van Tongeren ◽  
Yannik Zimmermann

Abstract We consider various integrable two-parameter deformations of the AdS3 × S3 × T4 superstring with quantum group symmetry. Working on the string worldsheet in light-cone gauge and to quadratic order in fermions, we obtain their common massive tree-level two-body S matrix, which matches the expansion of the conjectured exact q-deformed S matrix. We then analyze the behavior of the exact S matrix under mirror transformation — a double Wick rotation on the worldsheet — and find that it satisfies a mirror duality relation analogous to the distinguished q-deformed AdS5 × S5 S matrix in the one parameter deformation limit. Finally, we show that the fermionic q-deformed AdS5 × S5 S matrix also satisfies such a relation.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 531 ◽  
Author(s):  
Amnon Haberman ◽  
Leah Tsror (Lahkim) ◽  
Silit Lazare ◽  
Marina Hazanovsky ◽  
Sara Lebiush ◽  
...  

The global avocado industry is growing, and farmers are seeking to expand their plantations. However, many lands suitable for avocado planting were previously cultivated with hosts of the soil-borne fungal pathogen Verticillium dahliae, which is the causal agent of Verticillium wilt (VW). VW can seriously impair avocado orchards, and therefore, planting on infested soil is not recommended. The use of different rootstock types allows avocado cultivation in various regions with diverse biotic and abiotic constraints. Hence, we tested whether genetic variance among rootstocks may also be used to manage avocado VW. Six hundred trees, mostly Hass and some Ettinger, grafted on 23 selected rootstocks were evaluated for five years in a highly V. dahliae-inoculated plot for VW symptoms, fungal infection, and productivity. The selected rootstocks displayed a significant variation related to VW tolerance, and productive avocado rootstocks with potential VW tolerance were identified. Moreover, the rootstock productivity appears to correlate negatively to the susceptibility level. In conclusion, planting susceptible rootstocks (e.g., VC66, VC152, and VC26) in infested soil increases the likelihood of massive tree loss and low productivity. Whereas, tolerant rootstocks (e.g., VC804 and Dusa) may restrict VW and enable avocado cultivation on infested soils.


2019 ◽  
Vol 659 ◽  
pp. 587-598 ◽  
Author(s):  
Angélica Faria de Resende ◽  
Jochen Schöngart ◽  
Annia Susin Streher ◽  
Jefferson Ferreira-Ferreira ◽  
Maria Teresa Fernandez Piedade ◽  
...  

Botany ◽  
2015 ◽  
Vol 93 (10) ◽  
pp. 637-649 ◽  
Author(s):  
Yann Arlen-Pouliot ◽  
Serge Payette

Fens are one of the two most important peatland types of the boreal biome. The fen surface is often made of contrasted microenvironments, pools and strings, distributed in a geometric arrangement known as patterned fen. The fens are under the influence of varying water regimes causing the formation of pools, a process that we named aqualysis. The term refers to the physical degradation of the vegetation cover under the influence of water ponding. It is proposed here that pool inception is among a set of differential responses of peatland ecosystems to changes in hydrology caused by climate. In this study, we have evaluated the influence of climate on pool inception using the spatiotemporal distribution of trees found dead in pools of four boreal fens of northwestern Quebec. Tree-ring dating of tree mortality allowed the determination of the most recent and synchronized periods of pool formation in the studied fens. Most trees died over the last centuries, particularly after 1750 AD. The demographic pattern of tree establishment and mortality highlights a climatic forcing linked to the Little Ice Age oscillation opposing less humid events facilitating tree colonization succeeded by more humid events causing massive tree death and pool inception. We conclude that peatland aqualysis is among the processes controlled by climate contributing to the dynamics of patterned fens through pool formation.


Sign in / Sign up

Export Citation Format

Share Document