thick lead
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

2020 ◽  
Vol 24 (11-12) ◽  
pp. 2733-2739
Author(s):  
Balázs Broda ◽  
György Inzelt

Abstract The charge-discharge characteristics and the aging mechanism of PbO2 layers doped with bismuth in contact with sulfuric acid solutions were studied by using combined cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) techniques. For this purpose, thick lead dioxide layers (non-doped and doped with Bi) were electrodeposited on gold substrate from aqueous solutions of Pb(NO3)2 dissolved in nitric acid and they were investigated in sulfuric acid media. Based on the electrochemical and the mass change responses, it is concluded that during the electrodeposition, bismuth influences the structure of the PbO2 formed. Bi(III) also inhibits the oxidation of lead sulfate and affects the reduction kinetics of lead dioxide. During successive cyclization (aging), the presence of bismuth accelerates the hydration of PbO2.


Proceedings ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 40 ◽  
Author(s):  
Victor Petrov

The design was developed and investigated, and a laboratory sample of energy harvester based on 1–1.5 μm thick lead zirconate titanate Pb(Zr, Ti)O3 (PZT) films was assembled. PZT films were formed on oxidized silicon by high-frequency reactive plasma sputtering in the oxygen atmosphere. The laboratory sample of the energy harvester was sensitive to mechanical acceleration and vibration. Testing of sensors on a special electrodynamic stand showed that the sensor has a high sensitivity in the frequency range from 2–5 Hz with a sensitivity of up to 75 pС/g, which corresponds to a sensitivity of 1.2–1.5 V/g. The same design of the energy harvester was sensitive to scattered electromagnetic energy with a sensitivity of 6.8 10−4 V/(V/cm). The maximum response to the electromagnetic field was observed at a frequency of 100−200 Hz.


2017 ◽  
Vol 34 (12) ◽  
pp. 122502
Author(s):  
Fei Ma ◽  
Hong-Bin Zhang ◽  
Xue-Ying Zhang ◽  
Yan-Bin Zhang ◽  
Hong-Lin Ge ◽  
...  

2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Navitha M ◽  
Jitendra Nigam ◽  
Silambarasan N S ◽  
Piyush Kumar ◽  
Pavan Kumar

INTRODUCTION: Superficial tumors are treated with electron beams. Shielding blocks are used to conform to the shape of the tumor. These shielding blocks are usually kept at lower level of the applicator which is near the skin surface. The scattering property of electron may increase the surface dose which will increase with increasing electron energies. The purpose of this study is to compare electron beam transmission of different energies with two different block materials at different placement positions within the applicator. MATERIAL AND METHODS: Cerrobend alloy (50%bismuth, 26.7%lead, 13.3%tin and 10%cadmium) and 1mm thick lead sheets (94%lead, 6%alloy) in Varian Clinac2300C/D linear accelerator with electron energies 6,9,12,16 and 20MeVs using 10x10 applicator at 3 different holding levels was used. Measurements with RW3 Slab phantom (Water equivalent), PPC05 Parallel Plane Chamber, Dose 1 electrometer was done. The slab phantom 30x30x10 cm3 aligned with PPC05 Parallel Plane Chamber (at R85 of respective energies). Readings measured for open and block fields, for different thickness of shielding material, at different placement positions within the applicator. The percentage transmission calculated manually. RESULTS: Using electron energies 6,9,12,16, and 20MeVs respectively the transmission% were: with lead sheet 1mm thickness-2.48%,8.69%,16.05%, 28.03% and 39.50% at lower placement position, 1.19%,3.76%,7.75%,15% and 23.99% at centre placement and 0.96%,3.02%,6.15% and 20.27% for upper placement; with 2mm thickness-0.89%,1.62%,3.66%, 8.95% and 16.35% at lower level, 0.60%,1.28%,2.54%,5.74% and 10.72% at centre level and 0.57%,0.94%, 2.12%,4.85% and 9.22% at upper level; with 3mm thickness-0.80%,1.53%,2.88%,5.29% and 9.42% at lower position, 0.52%,1.25%,2.06%,4.03% and 7.36% at centre position and 0.51%, 0.90%,1.78%,3.66% and 6.43% at upper position; with 4mm thickness- 0.75%,1.40%, 2.71%,4.81% and 7.76% at lower level, 0.50%,1.18%,1.95%,3.68% and 6.31% at center level and 0.51%,0.80%, 1.70%,3.34% and 5.65% at upper level; with 5mm thickness-0.73%, 1.30%,2.57%,4.56% and 7.20% at lower level, 0.45%,1.06%,1.81%,3.48% and 5.68% at center level and 0.47%,0.79%,1.61%,3.13% and 5.24% at upper level. For Cerrobend material 5mm thickness, the transmission at lower level are 0.79%,1.50%,2.98%,5.58% and 10.39%, at center level are 0.52%,0.99%,2.09%,4.12% and 7.67% and at upper level are 0.49%,0.91%, 1.82%,3.75% and 6.90% for the energies 6,9,12,16 and 20 MeV’s respectively. CONCLUSION: There is not much difference in the transmission values at centre and upper levels so as to keep nearer the skin, the centre position in electron applicator may be optimum. Lead sheets can be used since easy to prepare especially for rectangular or square shapes.


2014 ◽  
Vol 38 (7) ◽  
pp. 074002
Author(s):  
Fei Ma ◽  
Hong-Lin Ge ◽  
Xue-Ying Zhang ◽  
Hong-Bin Zhang ◽  
Yong-Qin Ju ◽  
...  

The Analyst ◽  
2014 ◽  
Vol 139 (11) ◽  
pp. 2754-2763 ◽  
Author(s):  
Ceyhun E. Kirimli ◽  
Wei-Heng Shih ◽  
Wan Y. Shih

We have examined real-time,in situhybridization detection of target DNA (tDNA) in a buffer solution and in urine using 8 μm-thick lead magnesium niobate–lead titanate (PMN–PT) piezoelectric plate sensors (PEPSs) with improved 3-mercaptopropyltrimethoxysilane (MPS) insulation and a new multiple-parabola (>50) resonance peak position fitting algorithm.


Sign in / Sign up

Export Citation Format

Share Document