concentrating defect
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 3)

H-INDEX

25
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Miriam Zacchia ◽  
Francesca Del Vecchio Blanco ◽  
Annalaura Torella ◽  
Raffaele Raucci ◽  
Giancarlo Blasio ◽  
...  

Abstract Background Urine concentrating defect is a common dysfunction in ciliopathies, even though its underlying mechanism and its prognostic meaning are largely unknown. This study assesses renal function in a cohort of 54 Bardet–Biedl syndrome (BBS) individuals and analyses whether renal hyposthenuria is the result of specific tubule dysfunction and predicts renal disease progression. Methods The estimated glomerular filtration rate (eGFR), urine albumin:creatinine ratio (ACR) and maximum urine osmolality (max-Uosm) were measured in all patients. Genetic analysis was conducted in 43 patients. Annual eGFR decline (ΔeGFR) was measured in patients with a median follow-up period of 6.5 years. Urine aquaporin-2 (uAQP2) excretion was measured and the furosemide test was performed in patients and controls. Results At baseline, 33 (61.1%), 12 (22.2%) and 9 (16.7%) patients showed an eGFR >90, 60–90 and <60 mL/min/1.73 m2, respectively; 27.3% showed an ACR >30 mg/g and 55.8% of patients showed urine concentrating defect in the absence of renal insufficiency. Baseline eGFR, but not max-Uosm, correlated negatively with age. Conversely, truncating mutations affected max-Uosm and showed a trend towards a reduction in eGFR. Max-Uosm correlated with ΔeGFR (P < 0.005), suggesting that urine concentrating defect may predict disease progression. uAQP2 excretion and Na+ and Cl− fractional excretion after furosemide did not differ between hyposthenuric patients and controls, suggesting that specific collecting duct and thick ascending limb dysfunctions are unlikely to play a central role in the pathogenesis of hyposthenuria. Conclusions Hyposthenuria is a warning sign predicting poor renal outcome in BBS. The pathophysiology of this defect is most likely beyond defective tubular function.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Hassane Amlal ◽  
Fei Dong ◽  
Winston Kao

2019 ◽  
pp. 201-212
Author(s):  
Lesley Rees ◽  
Nicholas J.A Webb ◽  
Detlef Bockenhauer ◽  
Marilynn G. Punaro

Urolithiasis and nephrocalcinosis can be associated with substantial morbidity: stones can lead to obstruction and/or infection, which can lead to loss of kidney function, if not treated promptly. Nephrocalcinosis is often associated with a urinary concentrating defect, predisposing to dehydration. This chapter discusses the underlying causes of renal calculi and nephrocalcinosis, their diagnosis, and the acute and chronic management.


2018 ◽  
Vol 315 (5) ◽  
pp. F1271-F1282 ◽  
Author(s):  
Sundeep Malik ◽  
Emily Lambert ◽  
Junhui Zhang ◽  
Tong Wang ◽  
Heather L. Clark ◽  
...  

To better understand the role of the inward-rectifying K channel Kir4.1 (KCNJ10) in the distal nephron, we initially studied a global Kir4.1 knockout mouse (gKO), which demonstrated the hypokalemia and hypomagnesemia seen in SeSAME/EAST syndrome and was associated with reduced Na/Cl cotransporter (NCC) expression. Lethality by ~3 wk, however, limits the usefulness of this model, so we developed a kidney-specific Kir4.1 “knockdown” mouse (ksKD) using a cadherin 16 promoter and Cre-loxP methodology. These mice appeared normal and survived to adulthood. Kir4.1 protein expression was decreased ~50% vs. wild-type (WT) mice by immunoblotting, and immunofluorescence showed moderately reduced Kir4.1 staining in distal convoluted tubule that was minimal or absent in connecting tubule and cortical collecting duct. Under control conditions, the ksKD mice showed metabolic alkalosis and relative hypercalcemia but were normokalemic and mildly hypermagnesemic despite decreased NCC expression. In addition, the mice had a severe urinary concentrating defect associated with hypernatremia, enlarged kidneys with tubulocystic dilations, and reduced aquaporin-3 expression. On a K/Mg-free diet for 1 wk, however, ksKD mice showed marked hypokalemia (serum K: 1.5 ± 0.1 vs. 3.0 ± 0.1 mEq/l for WT), which was associated with renal K wasting (transtubular K gradient: 11.4 ± 0.8 vs. 1.6 ± 0.4 in WT). Phosphorylated-NCC expression increased in WT but not ksKD mice on the K/Mg-free diet, suggesting that loss of NCC adaptation underlies the hypokalemia. In conclusion, even modest reduction in Kir4.1 expression results in impaired K conservation, which appears to be mediated by reduced expression of activated NCC.


2018 ◽  
Vol 33 (2) ◽  
pp. 2156-2170 ◽  
Author(s):  
Alena Cherezova ◽  
Viktor Tomilin ◽  
Vadym Buncha ◽  
Oleg Zaika ◽  
Pablo A. Ortiz ◽  
...  
Keyword(s):  

2018 ◽  
Vol 8 ◽  
Author(s):  
Devishree Krishnan ◽  
Wanling Pan ◽  
Megan R. Beggs ◽  
Francesco Trepiccione ◽  
Régine Chambrey ◽  
...  

2017 ◽  
Vol 313 (4) ◽  
pp. F914-F925 ◽  
Author(s):  
Yu Lin ◽  
Tiezheng Zhang ◽  
Pinning Feng ◽  
Miaojuan Qiu ◽  
Qiaojuan Liu ◽  
...  

The direct renin inhibitor aliskiren has been shown to be retained and persist in medullary collecting ducts even after treatment is discontinued, suggesting a new mechanism of action for this drug. The purpose of the present study was to investigate whether aliskiren regulates renal aquaporin expression in the collecting ducts and improves urinary concentrating defect induced by lithium in mice. The mice were fed with either normal chow or LiCl diet (40 mmol·kg dry food−1·day−1 for 4 days and 20 mmol·kg dry food−1·day−1 for the last 3 days) for 7 days. Some mice were intraperitoneally injected with aliskiren (50 mg·kg body wt−1·day−1 in saline). Aliskiren significantly increased protein abundance of aquaporin-2 (AQP2) in the kidney inner medulla in mice. In inner medulla collecting duct cell suspension, aliskiren markedly increased AQP2 and phosphorylated AQP2 at serine 256 (pS256-AQP2) protein abundance, which was significantly inhibited both by adenylyl cyclase inhibitor MDL-12330A and by PKA inhibitor H89, indicating an involvement of the cAMP-PKA signaling pathway in aliskiren-induced increased AQP2 expression. Aliskiren treatment improved urinary concentrating defect in lithium-treated mice and partially prevented the decrease of AQP2 and pS256-AQP2 protein abundance in the inner medulla of the kidney. In conclusion, the direct renin inhibitor aliskiren upregulates AQP2 protein expression in inner medullary collecting duct principal cells and prevents lithium-induced nephrogenic diabetes insipidus likely via cAMP-PKA pathways.


2017 ◽  
Vol 313 (3) ◽  
pp. F669-F676 ◽  
Author(s):  
Theun de Groot ◽  
Joan Doornebal ◽  
Birgitte M. Christensen ◽  
Simone Cockx ◽  
Anne P. Sinke ◽  
...  

Lithium is the mainstay treatment for patients with bipolar disorder, but it generally causes nephrogenic diabetes insipidus (NDI), a disorder in which the renal urine concentrating ability has become vasopressin insensitive. Li-NDI is caused by lithium uptake by collecting duct principal cells and downregulation of aquaporin-2 (AQP2) water channels, which are essential for water uptake from tubular urine. Recently, we found that the prophylactic administration of acetazolamide to mice effectively attenuated Li-NDI. To evaluate whether acetazolamide might benefit lithium-treated patients, we administered acetazolamide to mice with established Li-NDI and six patients with a lithium-induced urinary concentrating defect. In mice, acetazolamide partially reversed lithium-induced polyuria and increased urine osmolality, which, however, did not coincide with increased AQP2 abundances. In patients, acetazolamide led to the withdrawal of two patients from the study due to side effects. In the four remaining patients acetazolamide did not lead to clinically relevant changes in maximal urine osmolality. Urine output was also not affected, although none of these patients demonstrated overt lithium-induced polyuria. In three out of four patients, acetazolamide treatment increased serum creatinine levels, indicating a decreased glomerular filtration rate (GFR). Strikingly, these three patients also showed a decrease in systemic blood pressure. All together, our data reveal that acetazolamide does not improve the urinary concentrating defect caused by lithium, but it lowers the GFR, likely explaining the reduced urine output in our mice and in a recently reported patient with lithium-induced polyuria. The reduced GFR in patients prone to chronic kidney disease development, however, warrants against application of acetazolamide in Li-NDI patients without long-term (pre)clinical studies.


2017 ◽  
Vol 3 (2) ◽  
pp. 57-65 ◽  
Author(s):  
Miriam Zacchia ◽  
Valentina Di Iorio ◽  
Francesco Trepiccione ◽  
Marianna Caterino ◽  
Giovambattista Capasso

2016 ◽  
Vol 311 (4) ◽  
pp. F763-F776 ◽  
Author(s):  
Peili Zheng ◽  
Yu Lin ◽  
Feifei Wang ◽  
Renfei Luo ◽  
Tiezheng Zhang ◽  
...  

Endoplasmic reticulum (ER) stress has been implicated in some types of glomerular and tubular disorders. The objectives of this study were to elucidate the role of ER stress in lithium-induced nephrogenic diabetes insipidus (NDI) and to investigate whether attenuation of ER stress by 4-phenylbutyric acid (4-PBA) improves urinary concentrating defect in lithium-treated rats. Wistar rats received lithium (40 mmol/kg food), 4-PBA (320 mg/kg body wt by gavage every day), or no treatment (control) for 2 wk, and they were dehydrated for 24 h before euthanasia. Lithium treatment resulted in increased urine output and decreased urinary osmolality, which was significantly improved by 4-PBA. 4-PBA also prevented reduced protein expression of aquaporin-2 (AQP2), pS256-AQP2, and pS261-AQP2 in the inner medulla of kidneys from lithium-treated rats after 24-h dehydration. Lithium treatment resulted in increased expression of ER stress markers in the inner medulla, which was associated with dilated cisternae and expansion of ER in the inner medullary collecting duct (IMCD) principal cells. Confocal immunofluorescence studies showed colocalization of a molecular chaperone, binding IgG protein (BiP), with AQP2 in principal cells. Immunohistochemistry demonstrated increased intracellular expression of BiP and decreased AQP2 expression in IMCD principal cells of kidneys from lithium-treated rats. 4-PBA attenuated expression of ER stress markers and recovered ER morphology. In IMCD suspensions isolated from lithium-treated rats, 4-PBA incubation was also associated with increased AQP2 expression and ameliorated ER stress. In conclusion, in experimental lithium-induced NDI, 4-PBA improved the urinary concentrating defect and increased AQP2 expression, likely via attenuating ER stress in IMCD principal cells.


Sign in / Sign up

Export Citation Format

Share Document