halogen acid
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 31 (37) ◽  
pp. 2170277
Author(s):  
Jun Guo ◽  
Jianmin Yang ◽  
Zhen‐Hua Ge ◽  
Binbin Jiang ◽  
Yang Qiu ◽  
...  

2021 ◽  
pp. 2102838
Author(s):  
Jun Guo ◽  
Jianmin Yang ◽  
Zhen‐Hua Ge ◽  
Binbin Jiang ◽  
Yang Qiu ◽  
...  

2021 ◽  
Author(s):  
Veejendra Yadav ◽  
Dasari L V K Prasad ◽  
Arpita Yadav ◽  
Maddali L N Rao

<p>The predominant transformations of 4-methyl- and 4-phenyl-1,3,3-<i>tris</i>-carbethoxycyclobutenes to s-<i>trans</i>,<i>trans</i>-1,1,3-<i>tris</i>-carbethoxy-4-methyl- and s-<i>trans</i>,<i>trans</i>-1,1,3-<i>tris</i>-carbethoxy-4-phenyl-1,3-butadienes, respectively, are discussed to proceed through pathways entailing heterolytic cleavage of the s<sub>C3C4</sub> bond rather than the usual conrotatory ring opening following the rules of torquoselectivity. The adventitious or in situ generated halogen acid from CDCl<sub>3</sub> catalyzes the reaction by protonation of the geminal ester group to weaken s<sub>C3C4</sub> bond and allow its S<sub>N</sub>2 cleavage by chloride ion. This is followed by cisoid<b>→</b>transoid isomerization and loss of the elements of halogen acid to form the products. In the Lewis acid-catalyzed reaction of 4-phenyl-1,3,3-<i>tris</i>-carbethoxycyclobutene in CH<sub>2</sub>Cl<sub>2</sub>, coordination of Lewis acid with the geminal ester group is followed by heterolytic cleavage of the s<sub>C3C4</sub> bond. The resultant species subsequently undergoes cisoid<b>→</b>transoid isomerization before losing the Lewis acid to form the products.<br></p>


2021 ◽  
Author(s):  
Veejendra Yadav ◽  
Dasari L V K Prasad ◽  
Arpita Yadav ◽  
Maddali L N Rao

<p>The predominant transformations of 4-methyl- and 4-phenyl-1,3,3-<i>tris</i>-carbethoxycyclobutenes to s-<i>trans</i>-<i>trans</i>-1,1,3-<i>tris</i>-carbethoxy-4-methyl- and 4-phenyl-1,3-butadienes, respectively, proceed through pathways entailing heterolytic cleavage of the s<sub>C3C4</sub> bond rather than the usual four-electron conrotatory ring opening following the rules of torquoselectivity. The adventitious or in situ generated halogen acid from CDCl<sub>3</sub> catalyzes the reaction of 4-methyl-1,3,3-<i>tris</i>-carbethoxycyclobutene by protonation of one of the two ester groups on C3 and, thereby, weakening the s<sub>C3C4</sub> bond to allow its heterolytic S<sub>N</sub>2 cleavage by the chloride ion. This is followed by <i>cisoid</i><b>→</b><i>transoid</i> isomerization and loss of the elements of the halogen acid to form the products. In the Lewis acid-catalyzed reaction of 4-phenyl-1,3,3-<i>tris</i>-carbethoxycyclobutene in CH<sub>2</sub>Cl<sub>2</sub>, coordination of the Lewis acid with one of two ester groups on C3 is followed by heterolytic cleavage of the s<sub>C3C4</sub> bond. The resultant species subsequently undergoes <i>cisoid</i><b>→</b><i>transoid</i> isomerization before losing the Lewis acid to form the products.<br></p>


2020 ◽  
Author(s):  
Veejendra Yadav ◽  
Dasari L V K Prasad ◽  
Arpita Yadav ◽  
Maddali L N Rao

<p>The predominant transformations of 4-methyl- and 4-phenyl-1,3,3-<i>tris</i>-carbethoxycyclobutenes to s-<i>trans</i>-<i>trans</i>-1,1,3-<i>tris</i>-carbethoxy-4-methyl- and 4-phenyl-1,3-butadienes, respectively, proceed through pathways entailing heterolytic cleavage of the s<sub>C3C4</sub> bond rather than the usual four-electron conrotatory ring opening following the rules of torquoselectivity. The adventitious or in situ generated halogen acid from CDCl<sub>3</sub> catalyzes the reaction of 4-methyl-1,3,3-<i>tris</i>-carbethoxycyclobutene by protonation of one of the two ester groups on C3 and, thereby, weakening the s<sub>C3C4</sub> bond to allow its heterolytic S<sub>N</sub>2 cleavage by the chloride ion. This is followed by <i>cisoid</i><b>→</b><i>transoid</i> isomerization and loss of the elements of the halogen acid to form the products. In the Lewis acid-catalyzed reaction of 4-phenyl-1,3,3-<i>tris</i>-carbethoxycyclobutene in CH<sub>2</sub>Cl<sub>2</sub>, coordination of the Lewis acid with one of two ester groups on C3 is followed by heterolytic cleavage of the s<sub>C3C4</sub> bond. The resultant species subsequently undergoes <i>cisoid</i><b>→</b><i>transoid</i> isomerization before losing the Lewis acid to form the products.<br></p>


2020 ◽  
Author(s):  
Veejendra Yadav ◽  
Dasari L V K Prasad ◽  
Arpita Yadav ◽  
Maddali L N Rao

<p>The predominant transformations of 4-methyl- and 4-phenyl-1,3,3-<i>tris</i>-carbethoxycyclobutenes to s-<i>trans</i>-<i>trans</i>-1,1,3-<i>tris</i>-carbethoxy-4-methyl- and 4-phenyl-1,3-butadienes, respectively, proceed through pathways entailing heterolytic cleavage of the s<sub>C3C4</sub> bond rather than the usual four-electron conrotatory ring opening following the rules of torquoselectivity. The adventitious or in situ generated halogen acid from CDCl<sub>3</sub> catalyzes the reaction of 4-methyl-1,3,3-<i>tris</i>-carbethoxycyclobutene by protonation of one of the two ester groups on C3 and, thereby, weakening the s<sub>C3C4</sub> bond to allow its heterolytic S<sub>N</sub>2 cleavage by the chloride ion. This is followed by <i>cisoid</i><b>→</b><i>transoid</i> isomerization and loss of the elements of the halogen acid to form the products. In the Lewis acid-catalyzed reaction of 4-phenyl-1,3,3-<i>tris</i>-carbethoxycyclobutene in CH<sub>2</sub>Cl<sub>2</sub>, coordination of the Lewis acid with one of two ester groups on C3 is followed by heterolytic cleavage of the s<sub>C3C4</sub> bond. The resultant species subsequently undergoes <i>cisoid</i><b>→</b><i>transoid</i> isomerization before losing the Lewis acid to form the products.<br></p>


2020 ◽  
Author(s):  
Veejendra Yadav ◽  
Dasari L V K Prasad ◽  
Arpita Yadav ◽  
Maddali L N Rao

<p>The predominant transformations of 4-methyl- and 4-phenyl-1,3,3-<i>tris</i>-carbethoxycyclobutenes to s-<i>trans</i>-<i>trans</i>-1,1,3-<i>tris</i>-carbethoxy-4-methyl- and 4-phenyl-1,3-butadienes, respectively, proceed through a pathway entailing heterolytic cleavage of s<sub>C3C4</sub> bond rather than the usual four-electron conrotatory ring opening. The adventitious or in situ generated halogen acid catalyzes the reaction by either protonation of one of the two ester groups on C3 and, thus, weakening s<sub>C3C4</sub> bond to allow its heterolytic cleavage and formation of a stable cation or protonation followed by halide ion attack in S<sub>N</sub>2 manner on the methyl/phenyl-bearing carbon. Reorganization of the cation species formed in the former event and elimination of the elements of halogen acid from the halo-species formed in the latter event generate the observed product. The nucleophilic attack of DMSO to bring about heterolytic S<sub>N</sub>2 cleavage of s<sub>C3C4</sub> bond is also discussed.</p>


2019 ◽  
Vol 31 (5) ◽  
pp. 982-986 ◽  
Author(s):  
Muhammad Yusuf ◽  
Dahniar ◽  
Destria Roza ◽  
Marini Damanik

ab initio method used on the mechanism of acetalization of 2-methoxybenzaldehyde. ab initio method is a quantum mechanical approximate calculation and derived directly only from theoretical principles. All geometry optimizations were performed using 3-21G and 6-31G* basis set with Hyperchem 8.0 software (windows version). The aim of this study was to focus on the study of the mechanism of acetalization of 2-methoxybenzaldehyde using hydrochloric acid as catalysts. The computational calculation not only provided possible reaction steps but also provided possible energy change in each step of the reaction mechanism of acetalization of 2-methoxybenzaldehyde. The result showed that 2-methoxybenzaldehyde (0 kJ/mol) has the lowest energy and electronegativity compared to acetal product (-17.43 kJ/mol) and a labile hemiacetal (448.33 kJ/mol) due to its stability and the influence of neighbour atom.


2019 ◽  
Author(s):  
Veejendra Yadav ◽  
Dasari L V K Prasad ◽  
Arpita Yadav ◽  
Maddali L N Rao

<p>The predominant transformations of 4-methyl- and 4-phenyl-1,3,3-<i>tris</i>-carbethoxycyclobutenes to s-<i>trans</i>-<i>trans</i>-1,1,3-<i>tris</i>-carbethoxy-4-methyl- and 4-phenyl-1,3-butadienes, respectively, proceed through a pathway entailing heterolytic cleavage of s<sub>C3C4</sub> bond rather than the usual four-electron conrotatory ring opening. The adventitious or in situ generated halogen acid catalyzes the reaction by either protonation of one of the two ester groups on C3 and, thus, weakening s<sub>C3C4</sub> bond to allow its heterolytic cleavage and formation of a stable cation or protonation followed by halide ion attack in S<sub>N</sub>2 manner on the methyl/phenyl-bearing carbon. Reorganization of the cation species formed in the former event and elimination of the elements of halogen acid from the halo-species formed in the latter event generate the observed product. The nucleophilic attack of DMSO to bring about heterolytic S<sub>N</sub>2 cleavage of s<sub>C3C4</sub> bond is also discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document