discrimination judgment
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Alan L. F. Lee ◽  
Vincent de Gardelle ◽  
Pascal Mamassian

AbstractVisual confidence is the observers’ estimate of their precision in one single perceptual decision. Ultimately, however, observers often need to judge their confidence over a task in general rather than merely on one single decision. Here, we measured the global confidence acquired across multiple perceptual decisions. Participants performed a dual task on two series of oriented stimuli. The perceptual task was an orientation-discrimination judgment. The metacognitive task was a global confidence judgment: observers chose the series for which they felt they had performed better in the perceptual task. We found that choice accuracy in global confidence judgments improved as the number of items in the series increased, regardless of whether the global confidence judgment was made before (prospective) or after (retrospective) the perceptual decisions. This result is evidence that global confidence judgment was based on an integration of confidence information across multiple perceptual decisions rather than on a single one. Furthermore, we found a tendency for global confidence choices to be influenced by response times, and more so for recent perceptual decisions than earlier ones in the series of stimuli. Using model comparison, we found that global confidence is well described as a combination of noisy estimates of sensory evidence and position-weighted response-time evidence. In summary, humans can integrate information across multiple decisions to estimate global confidence, but this integration is not optimal, in particular because of biases in the use of response-time information.


2020 ◽  
Author(s):  
Alan L. F. Lee ◽  
Vincent de Gardelle ◽  
Pascal Mamassian

Visual confidence is the observers’ estimate of their precision in one single perceptual decision. Ultimately, however, observers often need to judge their confidence over a task in general rather than merely on one single decision. Here, we measured the global confidence acquired across multiple perceptual decisions. Participants performed a dual task on two series of oriented stimuli. The perceptual task was an orientation-discrimination judgment. The metacognitive task was a global confidence judgment: observers chose the series for which they felt they had performed better in the perceptual task. We found that choice accuracy in global confidence judgments improved as the number of items in the series increased, regardless of whether the global confidence judgment was made before (prospective) or after (retrospective) the perceptual decisions. This result is evidence that global confidence judgment was based on an integration of confidence information across multiple perceptual decisions rather than on a single one. Furthermore, we found a tendency for global confidence choices to be influenced by response times, and more so for recent perceptual decisions than earlier ones in the series of stimuli. Using model comparison, we found that global confidence is well described as a combination of noisy estimates of sensory evidence and position-weighted response-time evidence. In summary, humans can integrate information across multiple decisions to estimate global confidence, but this integration is not optimal, in particular because of biases in the use of response-time information.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Matan Mazor ◽  
Karl J Friston ◽  
Stephen M Fleming

Being confident in whether a stimulus is present or absent (a detection judgment) is qualitatively distinct from being confident in the identity of that stimulus (a discrimination judgment). In particular, in detection, evidence can only be available for the presence, not the absence, of a target object. This asymmetry suggests that higher-order cognitive and neural processes may be required for confidence in detection, and more specifically, in judgments about absence. In a within-subject, pre-registered and performance-matched fMRI design, we observed quadratic confidence effects in frontopolar cortex for detection but not discrimination. Furthermore, in the right temporoparietal junction, confidence effects were enhanced for judgments of target absence compared to judgments of target presence. We interpret these findings as reflecting qualitative differences between a neural basis for metacognitive evaluation of detection and discrimination, potentially in line with counterfactual or higher-order models of confidence formation in detection.


2019 ◽  
Author(s):  
Matan Mazor ◽  
Karl J. Friston ◽  
Stephen M. Fleming

Being confident in whether a stimulus is present or absent (a detection judgment) is qualitatively distinct from being confident in the identity of that stimulus (a discrimination judgment). In particular, in detection, evidence can only be available for the presence, not the absence, of a target object. This asymmetry suggests that higher-order cognitive and neural processes may be required for confidence in detection, and more specifically, in judgments about absence. In a within-subject, pre-registered and performance-matched fMRI design, we observed quadratic confidence effects in frontopolar cortex for detection but not discrimination. Furthermore, in the right temporoparietal junction, confidence effects were enhanced for judgments of target absence compared to judgments of target presence. We interpret these findings as reflecting qualitative differences between the neural basis of metacognitive evaluation of detection and discrimination, potentially in line with counterfactual or higher-order models of confidence formation in detection.


2018 ◽  
Author(s):  
Matthias Fritsche ◽  
Floris P. de Langea

AbstractPerceptual decisions are often influenced by contextual factors. For instance, when engaged in a visual discrimination task against a reference boundary, subjective reports about the judged stimulus feature are biased away from the boundary – a phenomenon termed reference repulsion. Until recently, this phenomenon has been thought to reflect a perceptual illusion regarding the appearance of the stimulus, but new evidence suggests that it may rather reflect a post-perceptual decision bias. To shed light on this issue, we examined whether and how orientation judgments affect perceptual appearance. In a first experiment, we confirmed that after judging a grating stimulus against a discrimination boundary, the subsequent reproduction response was indeed repelled from the boundary. To investigate the perceptual nature of this bias, in a second experiment we measured the perceived orientation of the grating stimulus more directly, in comparison to a reference stimulus visible at the same time. Although we did observe a small repulsive bias away from the boundary, this bias was explained by random trial-by-trial fluctuations in sensory representations together with classical stimulus adaptation effects and did not reflect a systematic bias due to the discrimination judgment. Overall, the current study indicates that discrimination judgments do not elicit a perceptual illusion and points towards a post-perceptual locus of reference repulsion.


2017 ◽  
Author(s):  
Jennifer K. Bertrand ◽  
Nathan J. Wispinski ◽  
Kyle E. Mathewson ◽  
Craig S. Chapman

Frequency-dependent brightness enhancement, where a flickering light can appear twice as bright as an equiluminant constant light, has been reported to exist within the alpha (8 – 12 Hz) band. Could oscillatory neural activity be driving this perceptual effect? Here, in two experiments, human subjects reported which of two flickering stimuli were brighter. Strikingly, 4 Hz stimuli were reported as brighter more than 80% of the time when compared to all other tested frequencies, even though all stimuli were equiluminant and of equal temporal length. Electroencephalography recordings showed that inter-trial phase coherence (ITC) of theta (4 Hz) was: 1) Significantly greater than alpha, contralateral to the flickering stimulus; 2) Enhanced by the presence of a second ipsilateral 4 Hz flickering stimulus; and 3) Uniquely lateralized, unlike the alpha band. Importantly, on trials with two identical stimuli (i.e. 4 Hz vs 4 Hz), the brightness discrimination judgment could be predicted by the hemispheric balance in the amount of 4 Hz ITC. We speculate that the theta rhythm plays a distinct information transfer role, where its ability to share information between hemispheres via entrainment promotes a better processing of visual information to inform a discrimination decision.


2016 ◽  
Author(s):  
Long Luu ◽  
Alan A Stocker

AbstractIllusions provide a great opportunity to study how perception is affected by both the observer's expectations and the way sensory information is represented1,2,3,4,5,6. Recently, Jazayeri and Movshon7 reported a new and interesting perceptual illusion, demonstrating that the perceived motion direction of a dynamic random dot stimulus is systematically biased when preceded by a motion discrimination judgment. The authors hypothesized that these biases emerge because the brain predominantly relies on those neurons that are most informative for solving the discrimination task8, but then is using the same neural weighting profile for generating the percept. In other words, they argue that these biases are “mistakes” of the brain, resulting from using inappropriate neural read-out weights. While we were able to replicate the illusion for a different visual stimulus (orientation), our new psychophysical data suggest that the above interpretation is likely incorrect: Biases are not caused by a read-out profile optimized for solving the discrimination task but rather by the specific choices subjects make in the discrimination task on any given trial. We formulate this idea as a conditioned Bayesian observer model and show that it can explain the new as well as the original psychophysical data. In this framework, the biases are not caused by mistake but rather by the brain's attempt to remain ‘self-consistent’ in its inference process. Our model establishes a direct connection between the current perceptual illusion and the well-known phenomena of cognitive consistency and dissonance9,10.


2016 ◽  
Author(s):  
Luke Lei Zhu ◽  
Karl Aquino ◽  
Abhijeet K. Vadera

Sign in / Sign up

Export Citation Format

Share Document