reference stimulus
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Riho Ogawa ◽  
Midori Tanaka ◽  
Takahiko Horiuchi

When stimuli are made sufficiently small, colour-normal individuals report a loss in hue perception, similar to tritanopia. This effect is referred to as small-field tritanopia. The interaction between small-field tritanopia and the rods working in scotopic vision has not been clarified. In this study, the problem is investigated by freely adjusting the hue, lightness, and saturation of the test stimulus to match the colour of the reference stimulus by observers. Three colours on the blackbody radiation trajectory with colour temperatures of 3500K, 5400K, and 11600K were used as reference colours. Each stimulus subtended a diameter of 6' and 10.8'. The 5400K and 11600K stimuli were distributed diagonally from the lower left to the upper right of each reference stimulus in the CIE 1976 u’v’ uniform chromaticity scale diagram. The distribution was similar to those of tritanopia. For the 3500K stimulus, the result did not show the influence of small-field tritanopia.


2021 ◽  
Author(s):  
A.V. Kalpadakis-Smith ◽  
V.K. Tailor ◽  
A.H. Dahlmann-Noor ◽  
J.A. Greenwood

AbstractVisual crowding is the disruptive effect of clutter on object recognition. Although most prominent in adult peripheral vision, crowding also disrupts foveal vision in typically-developing children and those with strabismic amblyopia. Do these crowding effects share the same mechanism? Here we exploit observations that crowded errors in peripheral vision are not random: target objects appear either averaged with the flankers (assimilation), or replaced by them (substitution). If amblyopic and developmental crowding share the same mechanism then their errors should be similarly systematic. We tested foveal vision in children aged 3-9 years with typical vision or strabismic amblyopia, and peripheral vision in adults. The perceptual effects of crowding were measured by requiring observers to adjust a reference stimulus to match the perceived orientation of a target ‘Vac-Man’ element. When the target was surrounded by flankers that differed by ±30°, adults and children reported orientations between the target and flankers (assimilation). Errors were reduced with ±90° differences, but primarily matched the flanker orientation (substitution) when they did occur. A population pooling model of crowding successfully simulated this pattern of errors in all three groups. We conclude that the perceptual effects of amblyopic and developing crowding are systematic and resemble the near periphery in adults, suggesting a common underlying mechanism.


2021 ◽  
pp. 174702182110570
Author(s):  
Alessia Beracci ◽  
Marissa Lynn Rescott ◽  
Vincenzo Natale ◽  
Marco Fabbri

The space-time interaction suggests a left-to-right directionality in the mind’s representation of elapsing time. However, studies showing a possible vertical time representation are scarce and contradictory. In Experiment 1, 32 participants had to judge the duration (200, 300, 500 or 600 milliseconds) of the target stimulus that appeared at the top, centre, or bottom of the screen, compared to a reference stimulus (400 milliseconds) always appeared in the centre of the screen. In Experiment 2, 32 participants were administered with the same procedure, but the reference stimulus appeared at the top, centre, or bottom of the screen and the target stimulus was fixed in the centre location. In both experiments, a space-time interaction was found with an association between short durations and bottom response key as well as between long durations and top key. The evidence of a vertical mental timeline was further confirmed by the distance effect with a lower level of performance for durations close to that of the reference stimulus. The results suggest a bottom-to-top mapping of time representation, more in line with the metaphor “more is up”.


Author(s):  
Yogesh Deepak Bansod ◽  
Maeruan Kebbach ◽  
Daniel Kluess ◽  
Rainer Bader ◽  
Ursula van Rienen

The piezoelectricity of bone is known to play a crucial role in bone adaptation and remodeling. The application of an external stimulus such as mechanical strain or electric field has the potential to enhance bone formation and implant osseointegration. Therefore, in the present study, the objective is to investigate bone remodeling under electromechanical stimulation as a step towards establishing therapeutic strategies. For the first time, piezoelectric bone remodeling in the human proximal tibia under electro-mechanical loads was analyzed using the finite element method in an open-source framework. The predicted bone density distributions were qualitatively and quantitatively assessed by comparing with the computed tomography (CT) scan and the bone mineral density (BMD) calculated from the CT, respectively. The effect of model parameters such as uniform initial bone density and reference stimulus on the final density distribution was investigated. Results of the parametric study showed that for different values of initial bone density the model predicted similar but not identical final density distribution. It was also shown that higher reference stimulus value yielded lower average bone density at the final time. The present study demonstrates an increase in bone density as a result of electrical stimulation. Thus, to minimize bone loss, for example, due to physical impairment or osteoporosis, mechanical loads during daily physical activities could be partially replaced by therapeutic electrical stimulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adiba Ali ◽  
Maitreyee Roy ◽  
Hind Saeed Alzahrani ◽  
Sieu K. Khuu

AbstractBlue-light filtering lenses (BFLs) are marketed to protect the eyes from blue light that may be hazardous to the visual system. Because BFLs attenuate light, they reduce object contrast, which may impact visual behaviours such as the perception of object speed which reduces with contrast. In the present study, we investigated whether speed perception is affected by BFLs. Using a two-interval forced-choice procedure in conjunction with Method of Constant Stimuli, participants (n = 20) judged whether the perceived speed of a moving test stimulus (1.5–4.5°/s) viewed through a BFL was faster than a reference stimulus (2.75°/s) viewed through a clear lens. This procedure was repeated for 3 different BFL brands and chromatic and achromatic stimuli. Psychometric function fits provided an estimate of the speed at which both test and reference stimuli were matched. We find that the perceived speed of both chromatic and achromatic test stimuli was reduced by 6 to 20% when viewed through BFLs, and lenses that attenuated the most blue-light produced the largest reductions in perceived speed. Our findings indicate that BFLs whilst may reduce exposure to hazardous blue light, have unintended consequences to important visual behaviours such as motion perception.


2021 ◽  
Author(s):  
Rebecca L. Hornsey ◽  
Paul B. Hibbard

AbstractWe assessed the contribution of binocular disparity and the pictorial cues of linear perspective, texture, and scene clutter to the perception of distance in consumer virtual reality. As additional cues are made available, distance perception is predicted to improve, as measured by a reduction in systematic bias, and an increase in precision. We assessed (1) whether space is nonlinearly distorted; (2) the degree of size constancy across changes in distance; and (3) the weighting of pictorial versus binocular cues in VR. In the first task, participants positioned two spheres so as to divide the egocentric distance to a reference stimulus (presented between 3 and 11 m) into three equal thirds. In the second and third tasks, participants set the size of a sphere, presented at the same distances and at eye-height, to match that of a hand-held football. Each task was performed in four environments varying in the available cues. We measured accuracy by identifying systematic biases in responses and precision as the standard deviation of these responses. While there was no evidence of nonlinear compression of space, participants did tend to underestimate distance linearly, but this bias was reduced with the addition of each cue. The addition of binocular cues, when rich pictorial cues were already available, reduced both the bias and variability of estimates. These results show that linear perspective and binocular cues, in particular, improve the accuracy and precision of distance estimates in virtual reality across a range of distances typical of many indoor environments.


2021 ◽  
pp. 174702182199733
Author(s):  
Chang H Lee ◽  
Clare Lally ◽  
Kathleen Rastle

Research suggests that readers of Korean Hangul demonstrate precise orthographic coding. In contrast to findings from many other languages, the identification of Hangul words is not speeded by prior masked presentation of transposition primes relative to substitution primes. The present studies asked whether evidence for precise orthographic coding is also observed in the same–different task—a task claimed to reflect pre-lexical orthographic representations. Experiments tested whether masked transposed-letter (Experiment 1) or transposed-syllable-block (Experiment 2) primes facilitate judgements about whether a target matches a reference stimulus. In contrast to previous results using lexical decision, significant transposition effects were observed in both cases. These findings add weight to the proposition that apparent differences across writing systems in the precision of orthographic coding may reflect demands of the word identification process rather than properties of orthographic representations themselves.


Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 49
Author(s):  
Jussi Jaatinen ◽  
Jukka Pätynen ◽  
Tapio Lokki

The relationship between perceived pitch and harmonic spectrum in complex tones is ambiguous. In this study, 31 professional orchestra musicians participated in a listening experiment where they adjusted the pitch of complex low-register successively presented tones to unison. Tones ranged from A0 to A2 (27.6–110 Hz) and were derived from acoustic instrument samples at three different dynamic levels. Four orchestra instruments were chosen as sources of the stimuli; double bass, bass tuba, contrabassoon, and contrabass clarinet. In addition, a sawtooth tone with 13 harmonics was included as a synthetic reference stimulus. The deviation of subjects’ tuning adjustments from unison tuning was greatest for the lowest tones, but remained unexpectedly high also for higher tones, even though all participants had long experience in accurate tuning. Preceding studies have proposed spectral centroid and Terhardt’s virtual pitch theory as useful predictors of the influence of the envelope of a harmonic spectrum on the perceived pitch. However, neither of these concepts were supported by our results. According to the principal component analysis of spectral differences between the presented tone pairs, the contrabass clarinet-type spectrum, where every second harmonic is attenuated, lowered the perceived pitch of a tone compared with tones with the same fundamental frequency but a different spectral envelope. In summary, the pitches of the stimuli were perceived as undefined and highly dependent on the listener, spectrum, and dynamic level. Despite their high professional level, the subjects did not perceive a common, unambiguous pitch of any of the stimuli. The contrabass clarinet-type spectrum lowered the perceived pitch.


2020 ◽  
Vol 31 (11) ◽  
pp. 1470-1474
Author(s):  
Kevin DeSimone ◽  
Minjung Kim ◽  
Richard F. Murray

Rapidly judging the number of objects in a scene is an important perceptual ability. Recent debates have centered on whether number perception is accomplished by dedicated mechanisms and, in particular, on whether number-adaptation aftereffects reflect adaptation of number per se or adaptation of related stimulus properties, such as density. Here, we report an adaptation experiment ( N = 8) for which the predictions of number and density theories are diametrically opposed. We found that when a reference stimulus has higher density than an adaptation stimulus but contains fewer elements, adaptation reduces the perceived number of elements in the reference stimulus. This is consistent with number adaptation and inconsistent with density adaptation. Thus, number-adaptation aftereffects are more than a by-product of density adaptation: When density and number are dissociated, adaptation effects are in the direction predicted by adaptation to number, not density.


2019 ◽  
Author(s):  
Chang ◽  
Kathleen Rastle

Research suggests that readers of Korean Hangul are characterised by precise orthographic coding. In contrast to findings from many Indo-European languages, the recognition of Hangul words is not speeded by prior masked presentation of transposed-letter or transposed-syllable primes relative to substitution primes. The present studies asked whether evidence for precise orthographic coding is also observed in the same-different task – a task claimed to reflect pre-lexical orthographic representations. Experiments tested whether masked transposed-syllable (Experiment 1) or transposed-letter (Experiment 2) primes facilitate judgments about whether a target matches a reference stimulus. In contrast to previous results using lexical decision, robust transposition effects were observed in both cases compared to substitution primes. These findings add weight to the proposition that position invariance is a universal characteristic of orthographic representation, although results also raise questions about how the orthographic processing stream should be characterised.


Sign in / Sign up

Export Citation Format

Share Document