Effect of Prestrain on Precipitation Behaviors of Ti-2.5Cu Alloy

2018 ◽  
Vol 37 (5) ◽  
pp. 487-493 ◽  
Author(s):  
Zhang Lincai ◽  
Ding Xiaoming ◽  
Ye Wei ◽  
Zhang Man ◽  
Song Zhenya

AbstractAs a special hardenable α titanium alloy, Ti-2.5 Cu alloy was a candidate material for high temperature components requiring high strength and plasticity. The effect of prestrain on the precipitation behaviors was investigated in the present study. Tensile tests show that elongation up to 22 % can be obtained after solid solution (SS) treatment. Thereafter, prestrain in tension with 5 %, 10 %, 15 % and 20 % was carried out for the SS samples and then duplex aging was applied. Transmitting electron microscopy (TEM) investigations show that larger Ti2Cu particles were observed in the prestrained condition than free aging one, as prestrain significantly speeds up the precipitation kinetics. The strength firstly increases and then decreases for the prestrained samples after duplex aging, where the competition between precipitation hardening and recovery softening should be responsible. With the consideration of SS, precipitation and recovery, a strength model for duplex aging combined with prestrain was established, which is in well agreement with experiments. Present study may provide a promising way to obtain the strength of deformed hcp materials in industry application.

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1568
Author(s):  
Ekaterina Khoroshko ◽  
Andrey Filippov ◽  
Sergei Tarasov ◽  
Nikolay Shamarin ◽  
Evgeny Moskvichev ◽  
...  

An as-cast macrostructure of electron beam additively manufactured metallic materials was represented by coarse columnar grains whose axes were inclined at 25° with respect to the substrate’s plane. One part of the as-grown samples was annealed to form a coarse grain microstructure while the other part was pre-deformed by forging and then annealed what allowed obtaining recrystallized microstructures with small grains and multiple annealing twin boundaries. This sample showed both high strength and plasticity during the tensile tests. These tensile tests demonstrated also two-stage stress-strain curves as depended on their strain hardening rates. High and low strain hardening rates corresponded to a twinning-dominated deformation at stage II and dislocation-base deformation at stage III. A submicron size strain-induced grain-subgrain microstructure was formed in the vicinity of a necked zone as a result of combined twinning/dislocation grain refining.


2009 ◽  
Vol 610-613 ◽  
pp. 1168-1173
Author(s):  
Ai Hong Guo ◽  
Wen Fang Cui ◽  
Yi Zhou Wu ◽  
Xiang Hong Liu ◽  
Lian Zhou

A kind of metastable β type Ti-30Nb-13Zr-0.5Fe (wt.%) alloy for biomedical application was newly designed and developed. In order to exam the phase transformation during aging and its effects on the mechanical properties, the alloy was β solubilized and aged at 350°C-550°C for 4 hours. The microstructures were observed by OM and TEM, and the phase structures were identified by XRD. The tensile tests were performed with various aged microstructures. The results show that a lot of ω phase precipitates during aging at 350°C, leading to the increase of strength and elastic modulus and drastic decrease of plasticity. Aging at 450°C, dot α phase uniformly precipitates from metastable β phase. The good combination of high strength 、high plasticity and low elastic modulus was obtained under this aging condition. With increasing aging temperature and aging time α precipitations coarsen and precipitation free zones (PFZ) along prior β grain boundaries form, which are the main reasons to lower the strength and plasticity.


2017 ◽  
Vol 891 ◽  
pp. 18-24
Author(s):  
Farnoosh Forouzan ◽  
Nanny Strandqvist ◽  
Esa Vuorinen ◽  
Erik Navara ◽  
Frank Mücklich

An advanced high strength steel (0.08 %C, 1.79 %Mn, 0.23 %Si) was subjected to different post-weld heat treatments by quenching & tempering treatments (Q&T) after laser welding to reduce the risk of martensite formation in a few seconds based on an idea of quench and partitioning (Q&P), mechanism. The thermal stability of retained austenite, microstructure development and mechanical properties have been studied at 2 tempering temperatures of 440°C (Ms) and 636°C (Bs), both for 15 minutes, by means of electron microscopy, dilatometry, hardness profile and tensile tests. Dilatometer study unveiled that redistribution of carbon atoms and precipitation of transition carbides occur around 150°C and austenite decomposition occur at 600°C. Tempering at 636°C resulted in notable effect on the mechanical properties, while no significant difference was detected at 440°C, except a slight hardness drop. The strength increased up to 12% for the different specimens without significant loss in ductility for all specimens tempered at 636°C, which may be caused by precipitation hardening and recrystallization of martensite lath boundaries during tempering around 600°C.


Author(s):  
D.M. Vanderwalker

Aluminum-lithium alloys have a low density and high strength to weight ratio. They are being developed for the aerospace industry.The high strength of Al-Li can be attributed to precipitation hardening. Unfortunately when aged, Al-Li aquires a low ductility and fracture toughness. The precipitate in Al-Li is part of a sequence SSSS → Al3Li → AlLi A description of the phases may be found in reference 1 . This paper is primarily concerned with the Al3Li phase. The addition of Zr to Al-Li is being explored to find the optimum in properties. Zirconium improves fracture toughness and inhibits recrystallization. This study is a comparision between two Al-Li-Zr alloys differing in Zr concentration.Al-2.99Li-0.17Zr(alloy A) and Al-2.99Li-0.67Zr (alloy B) were solutionized for one hour at 500oc followed by a water quench. The specimens were then aged at 150°C for 16 or 40 hours. The foils were punched into 3mm discs. The specimens were electropolished with a 1/3 nitric acid 2/3 methanol solution. The transmission electron microscopy was conducted on the JEM 200CX microscope.


Alloy Digest ◽  
1976 ◽  
Vol 25 (3) ◽  

Abstract AMPCOLOY 83 is a wrought copper-base alloy containing nominally 1.8% beryllium. It offers good formability in the unhardened condition and can be strengthened by precipitation hardening. It has a combination of high strength and hardness, good ductility, good electrical and thermal conductivity, excellent resistance to wear and fatigue, and high resistance to general corrosion. Among its many uses are components for resistance welding, bushings and shafts. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-310. Producer or source: Ampco Metal Inc..


Alloy Digest ◽  
1963 ◽  
Vol 12 (1) ◽  

Abstract G-E Alloy Rene 41 is a vacuum melted precipitation hardening nickel base alloy possessing high strength in the 1600-1800 F. temperature range. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ni-47. Producer or source: General Electric Company. Originally published November 1958, revised January 1963.


Alloy Digest ◽  
1964 ◽  
Vol 13 (6) ◽  

Abstract Nivco 10 is a cobalt-base turbine alloy having a combination of high damping capacity, high strength and high ductility. It is a precipitation hardening alloy recommended for use at temperatures up to 1200 F, such as turbine blades. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: Co-37. Producer or source: Westinghouse Electric Corporation.


Alloy Digest ◽  
1990 ◽  
Vol 39 (4) ◽  

Abstract ASTM A710 is a low-carbon, precipitation hardening high-strength alloy steel plate. It is well suited to critical applications. This datasheet provides information on composition and tensile properties as well as fracture toughness. It also includes information on heat treating and joining. Filing Code: SA-446. Producer or source: Bethlehem Steel Corporation.


Alloy Digest ◽  
2002 ◽  
Vol 51 (11) ◽  

Abstract Allvac 13-8 has good fabricability and can be age hardened by a single treatment in the range 510-620 deg C (950-1150 deg F). Cold working prior to aging enhances the aging. This martensitic precipitation-hardening stainless steel has very good resistance to general corrosion and stress-corrosion cracking. It develops very high strength and exhibits good transverse ductility and toughness in heavy sections. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-866. Producer or source: Allvac Metals Company.


Alloy Digest ◽  
1988 ◽  
Vol 37 (6) ◽  

Abstract Allegheny Ludlum AL 15-7 Alloy is a chromium-nickel-molybdenum-aluminum semi-austenitic stainless steel. It is heat treatable to high strength and it has a moderate level of corrosion resistance. It is available both as a conventionally melted product and as vacuum arc or electroslag refined material. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-496. Producer or source: Allegheny Ludlum Corporation.


Sign in / Sign up

Export Citation Format

Share Document