ventral furrow
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Jaclyn M Camuglia ◽  
Soline Chanet ◽  
Adam C Martin

Spindle orientation is often achieved by a complex of Pins/LGN, Mud/NuMa, Gαi, and Dynein, which interacts with astral microtubules to rotate the spindle. Cortical Pins/LGN recruitment serves as a critical step in this process. Here, we identify Pins-mediated planar cell polarized divisions in several of the mitotic domains of the early Drosophila embryo. We found that neither planar cell polarity pathways nor planar polarized myosin localization determined division orientation; instead, our findings strongly suggest that Pins planar polarity and force generated from mesoderm invagination are important. Disrupting Pins polarity via overexpression of a myristoylated version of Pins caused randomized division angles. We found that disrupting forces through chemical inhibitors, laser ablation, and depletion of an adherens junction protein disrupted Pins planar polarity and spindle orientation. Furthermore, snail depletion, which abrogates ventral furrow forces, disrupted Pins polarization and spindle orientation, suggesting that morphogenetic movements and resulting forces transmitted through the tissue can polarize Pins and orient division. Thus, morphogenetic forces associated with mesoderm invagination result in planar polarized Pins to mediate division orientation at a distant region of the embryo during morphogenesis. To our knowledge, this is the first in vivo example where mechanical force has been shown to polarize Pins to mediate division orientation.


2021 ◽  
Author(s):  
Nicholas S Tolwinski ◽  
Jay B Lusk ◽  
Ellora Hui Zhen Chua ◽  
Prameet Kaur ◽  
Isabelle Chiao Han Sung ◽  
...  

Proper embryonic development requires directional axes to pattern cells into embryonic structures. In Drosophila, spatially discrete expression of transcription factors determines the anterior to posterior organization of the early embryo, while the Toll and TGFβ signalling pathways determine the early dorsal to ventral pattern. Embryonic MAPK/ERK signaling contributes to both anterior to posterior patterning in the terminal regions and to dorsal to ventral patterning during oogenesis and embryonic stages. Here we describe a novel loss of function mutation in the Raf kinase gene, which leads to loss of ventral cell fates as seen through the loss of the ventral furrow, the absence of Dorsal/NFκB nuclear localization, the absence of mesoderm determinants Twist and Snail, and the expansion of TGFβ. Gene expression analysis showed cells adopting ectodermal fates much like loss of Toll signaling. Our results combine novel mutants, live imaging, optogenetics and transcriptomics to establish a novel role for Raf, that appears to be independent of the MAPK cascade, in embryonic patterning.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009173
Author(s):  
Michael C. Holcomb ◽  
Guo-Jie Jason Gao ◽  
Mahsa Servati ◽  
Dylan Schneider ◽  
Presley K. McNeely ◽  
...  

Formation of the ventral furrow in the Drosophila embryo relies on the apical constriction of cells in the ventral region to produce bending forces that drive tissue invagination. In our recent paper we observed that apical constrictions during the initial phase of ventral furrow formation produce elongated patterns of cellular constriction chains prior to invagination and argued that these are indicative of tensile stress feedback. Here, we quantitatively analyze the constriction patterns preceding ventral furrow formation and find that they are consistent with the predictions of our active-granular-fluid model of a monolayer of mechanically coupled stress-sensitive constricting particles. Our model shows that tensile feedback causes constriction chains to develop along underlying precursor tensile stress chains that gradually strengthen with subsequent cellular constrictions. As seen in both our model and available optogenetic experiments, this mechanism allows constriction chains to penetrate or circumvent zones of reduced cell contractility, thus increasing the robustness of ventral furrow formation to spatial variation of cell contractility by rescuing cellular constrictions in the disrupted regions.


2021 ◽  
Vol 118 (23) ◽  
pp. e2102691118
Author(s):  
Sarah McFann ◽  
Sayantan Dutta ◽  
Jared E. Toettcher ◽  
Stanislav Y. Shvartsman

Markers for the endoderm and mesoderm germ layers are commonly expressed together in the early embryo, potentially reflecting cells’ ability to explore potential fates before fully committing. It remains unclear when commitment to a single-germ layer is reached and how it is impacted by external signals. Here, we address this important question in Drosophila, a convenient model system in which mesodermal and endodermal fates are associated with distinct cellular movements during gastrulation. Systematically applying endoderm-inducing extracellular signal-regulated kinase (ERK) signals to the ventral medial embryo—which normally only receives a mesoderm-inducing cue—reveals a critical time window during which mesodermal cell movements and gene expression are suppressed by proendoderm signaling. We identify the ERK target gene huckebein (hkb) as the main cause of the ventral furrow suppression and use computational modeling to show that Hkb repression of the mesoderm-associated gene snail is sufficient to account for a broad range of transcriptional and morphogenetic effects. Our approach, pairing precise signaling perturbations with observation of transcriptional dynamics and cell movements, provides a general framework for dissecting the complexities of combinatorial tissue patterning.


2021 ◽  
Author(s):  
Amanda Nicole Goldner ◽  
Konstantin Doubrovinski

Ventral furrow (VF) formation in Drosophila melanogaster is an important model of epithelial folding. Past studies of VF formation focus on the role of apical constriction in driving folding. However, the relative contributions of other forces are largely unexplored. When basal membrane formation is genetically blocked using RNAi-mediated anillin knockdown (scra RNAi), the VF is still capable of folding. scra RNAi and control embryos display quantifiable cell length differences throughout gastrulation, as well as qualitative differences in membrane integrity. To interpret our observations, we developed a computational model of VF formation that explicitly simulates the flows of the viscous cytoplasm. The viscosity included in our model is required for tissue invagination in the complete absence of basal membranes and explains the observed differences in membrane lengths across conditions. In the absence of basal membranes, epithelial folding requires the presence of viscous shear forces from cytoplasm. Our model characterizes folding during VF formation as a swimming phenomenon, where tissue deforms by pushing against the ambient viscous surroundings. Since VF formation is successful in scra RNAi embryos, we propose that models of gastrulation should also be tested for their ability to replicate folding in the absence of basal membranes.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ashley Rich ◽  
Richard G Fehon ◽  
Michael Glotzer

Ventral furrow formation, the first step in Drosophila gastrulation, is a well-studied example of tissue morphogenesis. Rho1 is highly active in a subset of ventral cells and is required for this morphogenetic event. However, it is unclear whether spatially patterned Rho1 activity alone is sufficient to recapitulate all aspects of this morphogenetic event, including anisotropic apical constriction and coordinated cell movements. Here, using an optogenetic probe that rapidly and robustly activates Rho1 in Drosophila tissues, we show that Rho1 activity induces ectopic deformations in the dorsal and ventral epithelia of Drosophila embryos. These perturbations reveal substantial differences in how ventral and dorsal cells, both within and outside the zone of Rho1 activation, respond to spatially and temporally identical patterns of Rho1 activation. Our results demonstrate that an asymmetric zone of Rho1 activity is not sufficient to recapitulate ventral furrow formation and reveal that additional, ventral-specific factors contribute to the cell- and tissue-level behaviors that emerge during ventral furrow formation.


Author(s):  
Marlis Denk-Lobnig ◽  
Natalie C Heer ◽  
Adam C Martin

AbstractDuring development, gene expression regulates cell mechanics and shape to sculpt tissues. Epithelial folding proceeds through distinct cell shape changes that occur in different regions of a tissue. Here, using quantitative imaging in Drosophila melanogaster, we investigate how patterned cell shape changes promote tissue bending during early embryogenesis. We find that the transcription factors Twist and Snail combinatorially regulate a unique multicellular pattern of junctional F-actin density, which corresponds to whether cells apically constrict, stretch, or maintain their shape. Part of this pattern is a gradient in junctional F-actin and apical myosin-2, and the width of this gradient regulates tissue curvature. The actomyosin gradient results from a gradient in RhoA activation that is refined by a balance between RhoGEF2 and the RhoGAP C-GAP. Thus, cell behavior in the ventral furrow is choreographed by the interplay of distinct gene expression patterns and this coordination regulates tissue shape.


2020 ◽  
Author(s):  
Ashley Rich ◽  
Richard G. Fehon ◽  
Michael Glotzer

AbstractVentral furrow formation, the first step in Drosophila gastrulation, is a well-studied example of tissue morphogenesis. Rho1 is highly active in a subset of ventral cells and is required for this morphogenetic event. However, it is unclear whether spatially patterned Rho1 activity alone is sufficient to recapitulate all aspects of this morphogenetic event, including anisotropic apical constriction and coordinated cell movements. Here, using an optogenetic probe that rapidly and robustly activates Rho1 in Drosophila tissues, we show that Rho1 activity induces ectopic deformations in the dorsal and ventral epithelia of Drosophila embryos. These perturbations reveal substantial differences in how ventral and dorsal cells, both within and outside the zone of Rho1 activation, respond to spatially and temporally identical patterns of Rho1 activation. Our results demonstrate that an asymmetric zone of Rho1 activity is not sufficient to recapitulate ventral furrow formation and indicate that additional, ventral-specific factors contribute to the cell- and tissue-level behaviors that emerge during ventral furrow formation.


2019 ◽  
Author(s):  
Michael C. Holcomb ◽  
Guo-Jie Jason Gao ◽  
Mahsa Servati ◽  
Dylan Schneider ◽  
Presley K. McNeely ◽  
...  

AbstractFormation of the ventral furrow in the Drosophila embryo relies on the apical constriction of cells in the ventral region to produce bending forces that drive tissue invagination. Recently [J Phys Condens Matter. 2016;28(41):414021], we observed that apical constrictions during the initial phase of ventral furrow formation produce elongated patterns of cellular constriction chains prior to invagination, and argued that these are indicative of tensile stress feedback. Here, we quantitatively analyze the constriction patterns preceding ventral furrow formation and find that they are consistent with the predictions of our active-granular-fluid model of a monolayer of mechanically coupled stress-sensitive constricting particles. Our model shows that tensile feedback causes constriction chains to develop along underlying precursor tensile stress chains that gradually strengthen with subsequent cellular constrictions. As seen in both our model and available optogenetic experiments, this mechanism allows constriction chains to penetrate or circumvent zones of reduced cell contractility, thus increasing the robustness of ventral furrow formation to spatial variation of cell contractility by rescuing cellular constrictions in the disrupted regions.


2017 ◽  
Vol 114 (5) ◽  
pp. 1051-1056 ◽  
Author(s):  
Konstantin Doubrovinski ◽  
Michael Swan ◽  
Oleg Polyakov ◽  
Eric F. Wieschaus

Many models of morphogenesis are forced to assume specific mechanical properties of cells, because the actual mechanical properties of living tissues are largely unknown. Here, we measure the rheology of epithelial cells in the cellularizingDrosophilaembryo by injecting magnetic particles and studying their response to external actuation. We establish that, on timescales relevant to epithelial morphogenesis, the cytoplasm is predominantly viscous, whereas the cellular cortex is elastic. The timescale of elastic stress relaxation has a lower bound of 4 min, which is comparable to the time required for internalization of the ventral furrow during gastrulation. The cytoplasm was measured to be ∼103-fold as viscous as water. We show that elasticity depends on the actin cytoskeleton and conclude by discussing how these results relate to existing mechanical models of morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document