eutectic silicon
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 42)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 2152 (1) ◽  
pp. 012022
Author(s):  
Gaozhan Zhao ◽  
Zhihui Xing ◽  
Ming Li ◽  
Shiqing Gao ◽  
Jianquan Tao ◽  
...  

Abstract The as-cast microstructure of a typical hypereutectic Al-25Si alloy was studied, and the growth mechanism of different primary silicon phases was analyzed. The results show that the as-cast microstructure phase composition of the alloy is mainly primary silicon and eutectic silicon. Primary silicon is mainly petal-like, massive and other complex polyhedrons, and there are a lot of cavities, cracks and other defects in the interior and boundary; Eutectic silicon is coarse and long needle-like, and the distribution is relatively messy, which seriously deteriorates the mechanical properties and cutting performance, and hinders the further application of the alloy in the field of lightweight pistons. Petal-shaped primary silicon is grown by combining five tetrahedral crystal nuclei in the melt into a decahedron, while bulk primary silicon is mainly caused by the unbalanced aggregation of impurity elements. And these two types of silicon phase growth methods are related to the twin groove growth mechanism, which is the result of a combination of multiple mechanisms.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1946
Author(s):  
Anastasiya D. Shlyaptseva ◽  
Igor A. Petrov ◽  
Alexandr P. Ryakhovsky ◽  
Elena V. Medvedeva ◽  
Victor V. Tcherdyntsev

The possibility of using complex structure modification for aluminium casting alloys’ mechanical properties improvement was studied. The fluxes widely used in the industry are mainly intended for the modification of a single structural component of Al–Si alloys, which does not allow unifying of the modification process in a production environment. Thus, a new modifying flux that has a complex effect on the structure of Al–Si alloys has been developed. It consists of the following components: TiO2, containing a primary α-Al grain size modifier; BaF2 containing a eutectic silicon modifier; KF used to transform titanium and barium into the melt. The effect of the complex titanium dioxide-based modifier on the macro-, microstructure and the mechanical properties of industrial aluminium–silicon casting alloys containing 5%, 6%, 9%, 11% and 17% Si by weight was studied. It was found that the tensile strength (σB) of Al–Si alloys exceeds the similar characteristics for the alloys modified using the standard sodium-containing flux to 32%, and the relative elongation (δ) increases to 54%. The alloys’ mechanical properties improvement was shown to be the result of the flux component’s complex effect on the macro- and microstructure. The effect includes the simultaneous reduction in secondary dendritic arm spacing due to titanium, the refinement and decreasing size of silicon particles in the eutectic with barium and potassium, and the modifying of the primary silicon. The reliability of the studies was confirmed using up-to-date test systems, a significant amount of experimental data and the repeatability of the results for a large number of samples in the identical initial state.


2021 ◽  
Vol 58 (12) ◽  
pp. 763-780
Author(s):  
P. Zhuang ◽  
H. Shi ◽  
Z. Zhang ◽  
R. Chai ◽  
J. Zan ◽  
...  

Abstract In this work, a solution heat treatment of Al-Si-Mg-Cu casting alloy was analyzed. A new short solution heat treatment (SHT) with only 60 min has been allowed. The results revealed that this short SHT enables the improvement of the dendritic structure and the spheroidization of the eutectic silicon particles. Furthermore, the alloy showed improved mechanical properties when compared to the same alloy subjected to a longer SHT of 4 h. It was observed that increasing the SHT temperature can accelerate the dissolution and homogenization of the silicon particles and intermetallic precipitates in the matrix.


Author(s):  
Yu Guo ◽  
Ye Wang ◽  
Bo Jiang ◽  
Hongtao Chen ◽  
Hongyu Xu ◽  
...  

To further improve the properties of the Al–11.5Si–0.4Fe–0.35Mg, the effects of different reductions of hot-rolling (HR) Al–Si–Fe–Mg alloy on microstructure, thermal conductivity (TC), and mechanical properties were investigated in this paper. The results show that the eutectic silicon phases are broken and moved during the HR process. The average size of eutectic silicon phase decreases. Meanwhile, the aspect ratio of eutectic silicon phase closer to 1 and the distribution of that are more uniform with the increase of HR reduction. In addition, the ternary Al–Fe–Si phases are also broken after HR. It indicates that the action of shear force induced by the HR process is beneficial to promote refinement and spheroidization of the eutectic silicon phase, hence further improves the properties of the alloy. Apparently, the fine and dispersed distribution of spherical silicon particles can minimize the splitting of the [Formula: see text]-Al matrix, decrease the scattering effect on free electrons, and increase the number of free-electron transport channel. Therefore, the overall performance of HR Al–Si–Fe–Mg alloy with a reduction of 71.25% is the best with the TC of 170.24 W/m[Formula: see text]K, the tensile strength of 241.98 MPa and elongation of 8.73%, respectively.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012069
Author(s):  
Shibin Liu ◽  
Jing Wang ◽  
Jianwei Xu ◽  
Xiangcai Meng

Abstract Used Al-13wt%Si alloy was as raw material, the influence mechanism of Al-Sr, Al-P and Al-RE ternary compound modifier was studied by casting technology. The effects of P, Sr and RE modification on Al-13wt% Si were studied by metallographic microscope, scanning electron microscope and X-ray. The effects of the addition order and amount of modifier on the microstructure of Al-13wt% Si were investigated The results show that compared with a single modifier, P + RE + Sr ternary composite modifier has more obvious modification effect on eutectic silicon in Al-13%Si alloy: the microstructure of different morphology can be obtained by using different amount and order of adding modifier. When the amount and order of modifier are 0.5wt%Sr, 0.7wt%P, 1.5wt%RE,the eutectic silicon with small size and uniform distribution can be obtained. Eutectic silicon consists of 70 μm, the slender lamella is refined to 5 μm.


2021 ◽  
Vol 2133 (1) ◽  
pp. 012021
Author(s):  
Lei Wu ◽  
Bing He ◽  
Weidong Li ◽  
Ming Qin

Abstract The effects of different Si contents on the microstructure and mechanical properties of A356 aluminum alloy were studied by metallographic microscope analysis and tensile property test. The results show that when the silicon content is between 7% and 11 %, with the increase of silicon content, the eutectic silicon in the matrix increases, and the tensile strength and elongation decrease. When the silicon content increased to 13%, the primary silicon structure appeared in A356 aluminum alloy, and its mechanical properties increased.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1450
Author(s):  
Zhong-Qiang Dong ◽  
Jin-Guo Wang ◽  
Zhi-Ping Guan ◽  
Pin-Kui Ma ◽  
Po Zhao ◽  
...  

The thermal conductivity of alloys is gradually becoming appreciated. It is often assumed that heat treatment can improve the thermal conductivity of Al-Si-Mg-Cu alloys, but there has been little relevant research. This paper studies the effects of different casting processes and short T6 heat treatment (ST6) on the thermal conductivity and mechanical properties of Al-Si-Mg-Cu alloys. The results show that a microstructure with fine α-Al crystal grains can be obtained by semi-solid die casting (SSDC), improving the mechanical properties of the Al-Si-Mg-Cu alloy in the as-cast state. After SSDC, the size and aspect ratio of eutectic silicon can be reduced by ST6 treatment, effectively improving the thermal conductivity and mechanical properties of the alloy. Finally, the influence of eutectic silicon on electron transport is analyzed in detail. With the SSDC + ST6 processing technology, Al-Si-Mg-Cu alloys with excellent thermal conductivity and mechanical properties can be obtained.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1334
Author(s):  
Guanyi Wang ◽  
Zhiping Guan ◽  
Jinguo Wang ◽  
Mingwen Ren ◽  
Ruifang Yan ◽  
...  

Cooling rate plays a critical role in determining the thermal conductivity of Al-Si alloys. Although the effect of morphology and size of Si (changed by heat treatment) on its thermal conductivity has been investigated, the effect of cooling rates on thermal conductivity has not been well studied. In this study, we investigated the microstructure of an Al-8Si (with and without modification by Strontium (Sr)) alloy with cooling rates from 46.2 °C/s to 234 °C/s. It was found that the effect of cooling rate on thermal conductivity of Sr modification and Sr-free samples are opposite from each other. As a result, while the cooling rate increased from 46.2 °C/s to 234 °C/s, the calculated thermal conductivity increased from 145.3 MS/m to 151.5 MS/m for Sr-free Al-8Si alloy, and the calculated thermal conductivity was reduced from 187.5 MS/m to 176.7 MS/m for the Sr-modified Al-8Si alloy. By discussing how thermal conductivity correlates with eutectic silicon morphology and secondary dendrite arm spacing, the relationship between cooling rate and thermal conductivity were explained. This work suggests a new design strategy for improving the thermal conductivity of Al-Si hypoeutectic alloys.


Author(s):  
Ivan Panov ◽  
Boyan Dochev ◽  
Valentin Manolov ◽  
Angel Velikov ◽  
Vanya Dyakova

The structure of hypereutectic aluminum-silicon alloys consists of primary silicon crystals arranged in a eutectic matrix. In the present work the influence of different types of modifiers on the size and shape of the silicon crystals in the composition of the eutectic of the AlSi18 alloy has been studied. The classic for this type of alloys modifier (phosphorus), as well as the nanomodifiers SiC and nanodiamonds (ND) have been used. The results of the microstructural analysis show that the three modifiers used affect differently the shape and size of the eutectic silicon of the investigated alloy.


Sign in / Sign up

Export Citation Format

Share Document