adaptive momentum
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 21)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Ahmad AL Smadi ◽  
Atif Mehmood ◽  
Ahed Abugabah ◽  
Eiad Almekhlafi ◽  
Ahmad Mohammad Al-smadi

<p>In computer vision, image classification is one of the potential image processing tasks. Nowadays, fish classification is a wide considered issue within the areas of machine learning and image segmentation. Moreover, it has been extended to a variety of domains, such as marketing strategies. This paper presents an effective fish classification method based on convolutional neural networks (CNNs). The experiments were conducted on the new dataset of Bangladesh’s indigenous fish species with three kinds of splitting: 80-20%, 75-25%, and 70-30%. We provide a comprehensive comparison of several popular optimizers of CNN. In total, we perform a comparative analysis of 5 different state-of-the-art gradient descent-based optimizers, namely adaptive delta (AdaDelta), stochastic gradient descent (SGD), adaptive momentum (Adam), adaptive max pooling (Adamax), Root mean square propagation (Rmsprop), for CNN. Overall, the obtained experimental results show that Rmsprop, Adam, Adamax performed well compared to the other optimization techniques used, while AdaDelta and SGD performed the worst. Furthermore, the experimental results demonstrated that Adam optimizer attained the best results in performance measures for 70-30% and 80-20% splitting experiments, while the Rmsprop optimizer attained the best results in terms of performance measures of 70-25% splitting experiments. Finally, the proposed model is then compared with state-of-the-art deep CNNs models. Therefore, the proposed model attained the best accuracy of 98.46% in enhancing the CNN ability in classification, among others.</p>


Author(s):  
Yangfan Zhou ◽  
Kaizhu Huang ◽  
Cheng Cheng ◽  
Xuguang Wang ◽  
Xin Liu

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lara Lloret Iglesias ◽  
Pablo Sanz Bellón ◽  
Amaia Pérez del Barrio ◽  
Pablo Menéndez Fernández-Miranda ◽  
David Rodríguez González ◽  
...  

AbstractDeep learning is nowadays at the forefront of artificial intelligence. More precisely, the use of convolutional neural networks has drastically improved the learning capabilities of computer vision applications, being able to directly consider raw data without any prior feature extraction. Advanced methods in the machine learning field, such as adaptive momentum algorithms or dropout regularization, have dramatically improved the convolutional neural networks predicting ability, outperforming that of conventional fully connected neural networks. This work summarizes, in an intended didactic way, the main aspects of these cutting-edge techniques from a medical imaging perspective.


Sign in / Sign up

Export Citation Format

Share Document