scholarly journals Bone Mineral Density Response to Caloric Restriction–Induced Weight Loss or Exercise-Induced Weight Loss

2006 ◽  
Vol 166 (22) ◽  
pp. 2502 ◽  
Author(s):  
Dennis T. Villareal
Bone ◽  
2007 ◽  
Vol 40 (6) ◽  
pp. S76
Author(s):  
L.C. Santos ◽  
I.P. Cintra ◽  
M. Fisberg ◽  
L.A. Martini

Author(s):  
Tao Zhou ◽  
Dianjianyi Sun ◽  
Xiang Li ◽  
Yoriko Heianza ◽  
Meryl S LeBoff ◽  
...  

ABSTRACT Background SCFAs are involved in regulation of body weight and bone health. Objectives We aimed to examine whether genetic variations related to butyrate modified the relation between dietary fiber intake and changes in bone mineral density (BMD) in response to weight-loss dietary interventions. Methods In the 2-y Preventing Overweight Using Novel Dietary Strategies trial, 424 participants with BMD measured by DXA scan were randomly assigned to 1 of 4 diets varying in macronutrient intakes. A polygenic score (PGS) was calculated based on 7 genetic variants related to the production of butyrate for 370 of the 424 participants. Results SCFA PGS significantly modified the association between baseline dietary fiber intake and sex on 2-y changes in whole-body BMD (P-interaction = 0.049 and 0.008). In participants with the highest tertile of SCFA PGS, higher dietary fiber intake was related to a greater increase in BMD (β:  0.0022; 95% CI: 0.0009, 0.0035; P = 0.002), whereas no such association was found for participants in the lower tertiles. In the lowest tertiles of SCFA PGS, men showed a significant increase in whole-body BMD (β: 0.0280; 95% CI: 0.0112, 0.0447; P = 0.002) compared with women. In the highest tertile, no significant difference was found for the change in BMD between men and women. Conclusions Our data indicate that genetic variants related to butyrate modify the relations of dietary fiber intake and sex with long-term changes in BMD in response to weight-loss diet interventions.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Zewei Shen ◽  
◽  
Canqing Yu ◽  
Yu Guo ◽  
Zheng Bian ◽  
...  

Abstract Summary In a Chinese population from both urban and rural areas, weight loss of ≥ 5 kg from early adulthood to midlife was associated with a higher risk of hip fracture and lower BMD in later life. Introduction This study investigates the association of the long-term weight loss from young adulthood through the middle ages with the subsequent 10-year risk of hospitalized fracture and calcaneus bone mineral density (BMD). Methods China Kadoorie Biobank (CKB) was established during 2004–2008 in ten areas across China. Weight at age 25 years was self-reported at baseline, and weight at baseline and resurvey was measured by the calibrated equipment. Outcomes were hospitalized fracture during follow-up and calcaneus BMD measured at resurvey. Analysis for fracture risk included 411,812 participants who were free of fracture in the last 5 years before baseline, cancer, or stroke at any time before baseline. Analysis for BMD included 21,453 participants who participated in the resurvey of 2013–2014 with the same exclusion criteria as above. Results The mean age was 50.8 at baseline and 58.4 at resurvey. Median weight change from age 25 to baseline was 4.4 kg, with 20.7% losing weight and 58.5% gaining weight. During a median follow-up of 10.1 years, we documented 13,065 cases of first diagnosed fracture hospitalizations, including 1222 hip fracture. Compared with participants whose weight was stable (± 2.4 kg), the adjusted hazard ratios (95% CIs) for those with weight loss of ≥ 5.0 kg from age 25 to baseline was 1.39 (1.17 to 1.66) for hip fracture. Weight loss was not associated with fracture risk at other sites. Those with weight loss from age 25 to resurvey had the lowest BMD measures, with β (95% CIs) of − 4.52 (− 5.08 to − 3.96) for broadband ultrasound attenuation (BUA), − 4.83 (− 6.98, − 2.67) for speed of sound (SOS), and − 4.36 (− 5.22, − 3.49) for stiffness index (SI). Conclusions Weight loss from early adulthood to midlife was associated with a higher risk of hip fracture and lower BMD in later life.


Sign in / Sign up

Export Citation Format

Share Document