Ribonucleic acid. I. The test-tube synthesis of a viral nucleic acid. II. The development and use of molecular hybridization

JAMA ◽  
1974 ◽  
Vol 230 (7) ◽  
pp. 1036-1042
Author(s):  
S. Spiegelman
2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Jin-na Wang ◽  
Xu Wang ◽  
Shu-le Yu ◽  
Yue-hui Ding ◽  
Meng-lei Wang ◽  
...  

Objective. To evaluate the difference of clinical efficacy of peramivir alone and peramivir combined with immunomodulators (either ribonucleic acid or thymopetidum) in the treatment of severe influenza A with primary viral pneumonia. Methods. A retrospective analysis was applied to 45 patients who were diagnosed with severe influenza A with primary viral pneumonia in our hospital from December 2017 to March 2018. The cases were divided into three groups: the peramivir group, the peramivir combined with ribonucleic acid group, and the peramivir combined with thymopetidum group. Results. The duration of viral nucleic acid positivity in the peramivir group, the peramivir combined with ribonucleic acid group, and the peramivir combined with thymopetidum group was 6.13 ± 2.06, 6.53 ± 2.72, and 6.10 ± 1.37 days, respectively. The remission time of the clinical symptoms of the peramivir group, the peramivir combined with ribonucleic acid group, and the peramivir combined with thymopetidum group was 8.06 ± 2.73, 7.94 ± 2.89, and 7.67 ± 1.58 days, respectively. Comparisons between the peramivir group and the peramivir combined with ribonucleic acid group or the peramivir combined with thymopetidum group revealed no significant differences in the duration of virus nucleic acid positivity, remission time of clinical symptoms, time to fever alleviation, and time to cough alleviation. Conclusions. There is no observed benefit in the addition of ribonucleic acid or thymopetidum when peramivir sodium chloride injection is used in the treatment of severe influenza A with primary viral pneumonia. This trial is registered with ChiCTR1800019417.


2014 ◽  
Vol 155 (26) ◽  
pp. 1019-1023
Author(s):  
Judit Gervain

The successful therapy of hepatitis C viral infection requires that the illness is diagnosed before the development of structural changes of the liver. Testing is stepwise consisting of screening, diagnosis, and anti-viral therapy follow-up. For these steps there are different biochemical, serological, histological and molecular biological methods available. For screening, alanine aminotransferase and anti-HCV tests are used. The diagnosis of infection is confirmed using real-time polymerase chain reaction of the viral nucleic acid. Before initiation of the therapy liver biopsy is recommended to determine the level of structural changes in the liver. Alternatively, transient elastography or blood biomarkers may be also used for this purpose. Differential diagnosis should exclude the co-existence of other viral infections and chronic hepatitis due to other origin, with special attention to the presence of autoantibodies. The outcome of the antiviral therapy and the length of treatment are mainly determined by the viral genotype. In Hungary, most patients are infected with genotype 1, subtype b. The polymorphism type that occurs in the single nucleotide located next to the interleukin 28B region in chromosome 19 and the viral polymorphism type Q80K for infection with HCV 1a serve as predictive therapeutic markers. The follow-up of therapy is based on the quantitative determination of viral nucleic acid according to national and international protocols and should use the same method and laboratory throughout the treatment of an individual patient. Orv. Hetil., 2014, 155(26), 1019–1023.


2011 ◽  
Vol 8 (3) ◽  
pp. 235-244 ◽  
Author(s):  
Mahmoud Elsabahy ◽  
Adil Nazarali ◽  
Marianna Foldvari

1962 ◽  
Vol 203 (4) ◽  
pp. 693-696 ◽  
Author(s):  
Thomas F. Necheles

Myeloid marrow was rapidly removed from femurs of fasting young rabbits, sectioned, and incubated in Krebs-bicarbonate-CO2-oxygen buffer with appropriate C14-labeled precursors. All manipulations were designed to preserve the architecture of the tissue. After 1 hr the protein or nucleic acid-adenine was isolated and purified. Insulin, 0.01 U/ml added in vitro, stimulated histidine-2(ring)-C14 incorporation into protein by 26 ± 1.4%; alkali-treated insulin was inactive. Thyroxin elicited a 49.4 ± 2.1% stimulation at an optimum concentration of 10–7 m. Triiodothyronine, but not diiodothyronine, also had a significant effect. Insulin increased incorporation of carbon from adenosine-8-C14 into adenine of ribonucleic acid and deoxyribonucleic acid. Thyroxin, on the other hand, was without consistent effect on this process. Thyroxin stimulated significantly the incorporation of C14 of glycine-2-C14 into adenine. The possibility that part of the anabolic effect of thyroxin on bone marrow may arise from a stimulus to incorporation of precursors into purines is suggested.


Virology ◽  
1976 ◽  
Vol 72 (2) ◽  
pp. 456-470 ◽  
Author(s):  
S.J. Flint ◽  
Joe Sambrook ◽  
J.F. Williams ◽  
Phillip A. Sharp

Transfusion ◽  
2014 ◽  
Vol 55 (2) ◽  
pp. 395-404 ◽  
Author(s):  
Lunan Wang ◽  
Le Chang ◽  
Yunzheng Xie ◽  
Chengyin Huang ◽  
Lei Xu ◽  
...  

1997 ◽  
Vol 13 (7) ◽  
pp. 260-261 ◽  
Author(s):  
Joachim R. Marienfeld ◽  
Michael Unseld ◽  
Petra Brandt ◽  
Axel Brennicke

Sign in / Sign up

Export Citation Format

Share Document