scholarly journals Bone grafts and bone substitutes for treating distal radial fractures in adults

2007 ◽  
Author(s):  
HHG Handoll ◽  
AC Watts
2018 ◽  
Vol 69 (2) ◽  
pp. 429-433
Author(s):  
Solyom Arpad ◽  
Cristian Trambitas ◽  
Ecaterina Matei ◽  
Eugeniu Vasile ◽  
Fodor Pal ◽  
...  

Osteoplasty, is a procedure mostly applied in complicated bone fractures. Nowadays this method is widely used in primary fracture treatment while the native bone graft is progressively replaced with various synthetic bone substitutes. From the numerous bone grafts we�d like to mention a representative of ceramics, the S53P4 bioactive glass. (BonAlive�). The aim of this study was to investigate the healing process of different fracture types generated on rabbit femurs. During this experiment we used seven common European rabbits. We separated these animals into two groups; in the first group we surgically generated a total fracture in the middle 1/3 of the femur, while in the second group, we produced only a bone defect on the femur. The osteoplasty was carried out with bioactive glass and autologous bone grafts. The radiographic follow-up was immediate after the operation and after 3, 6 and 7 weeks. The animals were euthanized after 19, 20 and 21 weeks, for histomorphometric examination of the femur. It was also studied the ionic release from the used bioactive glass at physiological pH and the etching of the glass was studied by Scanning Electron Microscopy.


1994 ◽  
Vol 32 (3) ◽  
pp. 336
Author(s):  
Craig R. Duresne ◽  
Chevy Chase
Keyword(s):  

2019 ◽  
Vol 7 (11_suppl6) ◽  
pp. 2325967119S0046
Author(s):  
Adriel Benedict Haryono ◽  
Yoyos Dias Ismiarto

Biomedical zirconia was introduced in 1969 into medicine to solve the problem of alumina brittleness in hip replacement procedures and has since been used for various joint replacement appliances in orthopedic surgery. The most frequently-studied material is yttrium-stabilized zirconia, which is also known as tetragonal zirconia polycrystal (TZP). Y-TZP presents various interesting characteristics, such as low porosity, high density and high bending and compression strength, proving that it is suitable for biomedical application. UV-treated zirconia surfaces exhibited an enhanced osteoblast response, which was characterized by an accelerated and augmented cell attachment, accelerated cell spread and cytoskeletal development with increased proliferation. The purpose of this paper is to identify which method of treatment of zirconia material implant & ultraviolet stimulation effect for bone healing is the most effective and efficient based on literature review. Bone grafts are available in a variety of substances. These bone substitutes can be biological (natural) or synthetic. Re-absorption is also essential for bone growth. Specific cells continuously break down bones and rebuild them. Substitutes that break down too quickly are not suitable for bone grafts, as they do not allow enough time for the new bone to grow. From our literature review, Zirconia is one of the biomaterials that have a bright future because of its high mechanical strength and fracture toughness. Zirconia ceramics have several advantages over other ceramic materials due to the transformation toughening mechanisms operating in their microstructure that can be expressed in components made out of them. UV treatment substantially enhances the osteogenesis process, resulting in a greater amount of peri-implant bone, as well as an increased strength of bone-zirconia integration.


2021 ◽  
pp. 37-56
Author(s):  
Daniel R. Lee ◽  
James W. Poser
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document