Effect of Osteoplasty with Bioactive Glass (S53P4) in Bone Healing - In vivo Experiment on Common European Rabbits (Oryctolagus cuniculus)

2018 ◽  
Vol 69 (2) ◽  
pp. 429-433
Author(s):  
Solyom Arpad ◽  
Cristian Trambitas ◽  
Ecaterina Matei ◽  
Eugeniu Vasile ◽  
Fodor Pal ◽  
...  

Osteoplasty, is a procedure mostly applied in complicated bone fractures. Nowadays this method is widely used in primary fracture treatment while the native bone graft is progressively replaced with various synthetic bone substitutes. From the numerous bone grafts we�d like to mention a representative of ceramics, the S53P4 bioactive glass. (BonAlive�). The aim of this study was to investigate the healing process of different fracture types generated on rabbit femurs. During this experiment we used seven common European rabbits. We separated these animals into two groups; in the first group we surgically generated a total fracture in the middle 1/3 of the femur, while in the second group, we produced only a bone defect on the femur. The osteoplasty was carried out with bioactive glass and autologous bone grafts. The radiographic follow-up was immediate after the operation and after 3, 6 and 7 weeks. The animals were euthanized after 19, 20 and 21 weeks, for histomorphometric examination of the femur. It was also studied the ionic release from the used bioactive glass at physiological pH and the etching of the glass was studied by Scanning Electron Microscopy.

2019 ◽  
Vol 20 (17) ◽  
pp. 4253 ◽  
Author(s):  
Fabian Westhauser ◽  
Christopher Essers ◽  
Maria Karadjian ◽  
Bruno Reible ◽  
Gerhard Schmidmaier ◽  
...  

Compared to other materials such as 45S5 bioactive glass (BG), β-tricalcium phosphate (β-TCP)-based bone substitutes such as Vitoss show limited material-driven stimulation of osteogenesis and/or angiogenesis. The unfavorable degradation kinetics of β-TCP-based bone substitutes may result in an imbalance between resorption and osseous regeneration. Composite materials like Vitoss BA (Vitoss supplemented with 20 wt % 45S5-BG particles) might help to overcome these limitations. However, the influence of BG particles in Vitoss BA compared to unsupplemented Vitoss on osteogenesis, resorption behavior, and angiogenesis is not yet described. In this study, Vitoss and Vitoss BA scaffolds were seeded with human mesenchymal stromal cells before subcutaneous implantation in immunodeficient mice for 10 weeks. Scaffold resorption was monitored by micro-computed tomography, while osteoid formation and vascularization were assessed by histomorphometry and gene expression analysis. Whilst slightly more osteoid and improved angiogenesis were found in Vitoss BA, maturation of the osteoid was more advanced in Vitoss scaffolds. The volume of Vitoss implants decreased significantly, combined with a significantly increased presence of resorbing cells, whilst the volume remained stable in Vitoss BA scaffolds. Future studies should evaluate the interaction of 45S5-BG with resorbing cells and bone precursor cells in greater detail to improve the understanding and application of β-TCP/45S5-BG composite bone substitute materials.


2020 ◽  
Vol 3 ◽  
Author(s):  
Anthony McGuire ◽  
Adam Knox ◽  
Caio de Andrade Staut ◽  
Melissa Kacena ◽  
Roman Natoli ◽  
...  

Background/Objective: Long bone fractures are an expensive and frequent cause of disability in humans. Research seeking to accelerate and improve the healing process is more essential than ever. Animal models, mice especially, provide an inexpensive and reproducible model of in vivo fracture healing. However, many measures of murine fracture healing outcomes are either expensive or destructive, limiting their ability to be translated to clinical studies. We seek to determine how these measures such as biomechanics, µCT, and histology correlate to the relatively new, inexpensive, and non-destructive method of mRUST scoring in a mouse model.  Methods: One hundred and thirty-five, 12-week old male C57BL6/J mice were divided into nine groups of 15 mice. Mice underwent a surgically created, femoral fracture. At biweekly timepoints, anteroposterior and lateral radiographs were taken, and 15 mice were sacrificed at each time point (7, 10, 14, 17, 21, 24, 28, 35, and 42 days post-surgery) for biomechanical, µCT, and histological analyses. The modified Radiographic Union Scale for Tibial fractures (mRUST scoring) provides a score based on the visualization of a callus and fracture line in four cortices on the radiographs. Data analysis will be performed to determine the degree of correlation between mRUST scoring and other fracture healing outcomes.  Results/Conclusion: Data collection in this experiment is still forthcoming. Upon successful completion of this project, we will have established numerical correlations between mRUST scoring and other fracture healing outcomes, such as biomechanics, µCT microarchitecture, and histology. These correlations will provide a powerful tool in future mouse fracture healing studies, as data on the state and strength of fracture repair could be determined by simple radiograph.  Scientific/Clinical Policy Impact and Implications: This study will both provide future murine fracture studies with an inexpensive and non-destructive method of assessment that is more directly translatable to human fracture studies. 


2019 ◽  
Vol 3 (s1) ◽  
pp. 105-106
Author(s):  
Jeffery Jay Howard Nielsen ◽  
Stewart A. Low ◽  
Philip S. Low

OBJECTIVES/SPECIFIC AIMS: The primary objective of this study was to evaluate the performance of a bone fracture targeted systemically administrable bone anabolic as a potential therapeutic for bone fracture repair. Currently all bone fracture repair therapeutic require local administration during surgery. However, the population that need the most assistance in repair bone fractures are not eligible for surgery. So, it was our goal to design an inject-able therapeutic to assist in bone fracture repair to reduce the invasiveness. The injectable nature of it allows for repair administration of the bone anabolic and for therapeutic effect throughout the entire bone fracture healing process. Targeting it to the bone fracture site reduces the toxicity and increases the efficacy. METHODS/STUDY POPULATION: METHODS To achieve the above objective, a bone mineral-(hydroxyapatite-) targeting oligopeptide was conjugated to the non-signaling end of an engineered parathyroid hormone related protein fragment 1-46 with substitutions at Glu22,25, Leu23,28,31, Aib29, Lys26,30 (ePTHrP). The negatively charged oligopeptide has been shown to target raw hydroxyapatite with remarkable specificity, while the attached PTHrP has been demonstrated to induce sustained and accelerated bone growth under control of endogenous morphogenic regulatory factors. The conjugate’s specificity arises from the fact that raw hydroxyapatite is only exposed whenever a bone is fractured, surgically cut, grafted, or induced to undergo accelerated remodeling. The hydroxyapatite-targeted conjugate can therefore be administered systemically (i.e. without invasive surgery or localized injection) and still accumulate on the exposed hydroxyapatite at the fracture site where it accelerates the healing process Murine in vivo experiments were conducted on female Swiss Webster mice (10 per group). Femoral fractures were induced with a 3-point bending device and stabilized. Mice were dosed with 3 nmol/kg/d of targeted-ePTHrP, non-conjugated (free) ePTHrP, or saline. Following a 4-week study, fracture callus densities were measured using microCT. Canine in vivo experiments were conducted on 1-year-old male beagles. Beagles underwent a 10 mm bilateral ulnar ostectomy. Two dogs in the treatment group and Three dogs in the control group were dosed daily with either targeted-ePTHrP 0.5nmol/kg/d or saline respectively. Dogs were x-rayed weekly for the first 6 weeks and then every other week thereafter. One tailed ANOVA followed by Dunnett’s post-hoc test was used to establish significance. All animal experiments were conducted as described in approved IACUC protocols. P<0.05 was considered significant. RESULTS/ANTICIPATED RESULTS: RESULTS SECTION: In the murine studies we observed a marked increase in fracture callus size and a 2-fold increase in bone deposition was observed in the targeted-ePTHrP group over the saline group (P<0.01). A significant doubling in bone density was also observed. Targeted-ePTHrP group fractured femurs were able to achieve their pre-fracture strength as early as 3 weeks compared to 9 weeks in the saline mice representing a 66% reduction in healing time. In the canine studies, we observe a significantly higher closure of the ostectomy gap than saline controls (P<0.05). In addition, no significant differences in weight are observed in the treatment vs. saline controls. No significant difference between the control group and treatment groups was found in a histological investigation of the organs. DISCUSSION/SIGNIFICANCE OF IMPACT: DISCUSSION: Although attempts have been made in developing a systemically administered fracture therapeutic for fracture repair, i.e. teriparatide, to date, no such anabolics have been approved for this use. In these studies there is evidence that anabolic activity was occurring at the fracture site, but at a level that did not meet FDA required end-points.2 It is plausible that if sufficient drug were to be delivered to a fracture site then improved fracture repair would be possible. In previous studies, we demonstrated fracture specific accumulation bone anabolics can be achieved by modifying the drug with acidic oligopeptides.3 Here, by modifying a safe, clinically proven, parathyroid hormone receptor agonist with an acidic oligopeptide we observe improved bone deposition and strength in mice. Furthermore, when administered to canine critical sized defect ostectomies, a more relevant and difficult model, we observe improved ostectomy closure. CLINICAL RELEVANCE:: The ability to accelerate bone fracture repair is a fundamental need that has not been addressed by conventional methods. By targeting bone anabolic agents to bone fractures, we can deliver sufficient concentrations of anabolic agent to the fracture site to accelerate healing, thus avoiding surgery and any ectopic bone growth associated with locally-applied bone anabolic agents.


Author(s):  
Radomir Šćepanović ◽  
Momir Stevanović

Abstract Bone defects might develop as a result of various pathological entities. Bone grafting is a widely used procedure that involves replacement of the missing tissue with natural or artificial substitute. The idea for artificial replacement of the missing bone tissue has been known for centuries and the evidence for these treatments has been found ever since prehistoric period. Bone grafting has been practiced for centuries with various non-osseous natural materials. The skeletal system plays a crucial role in the structural support, body movement and physical protection of the inner organs. Regeneration of bone defects is crucial for reestablishing of the form and function of the skeletal system,. While most bone defects can heal spontaneously under suitable conditions, bone grafts or substitute biomaterials are commonly used therapeutic strategies for reconstruction of large bone segments or moderate bone defect. An ideal bone grafting material should provide mechanical strength, be both osteoinductive and osteoconductive and should provide space for vascularization. In order to overcome limitations associated with the standard treatment of bone grafts, there is an increasing interest in studying substitute biomaterials, made of naturally derived or synthetic materials. Bone substitutes can be derived from biological products or from synthetic materials. Prior to testing in human subjects, the bone substitute materials should be tested in vitro and in vivo using animal models. Establishing of a suitable animal model is an essential step in the investigation and evaluation of the bone graft materials.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2795
Author(s):  
Elisa Fiume ◽  
Sara Ciavattini ◽  
Enrica Verné ◽  
Francesco Baino

Since 2006, the foam replica method has been commonly recognized as a valuable technology for the production of highly porous bioactive glass scaffolds showing three-dimensional, open-cell structures closely mimicking that of natural trabecular bone. Despite this, there are important drawbacks making the usage of foam-replicated glass scaffolds a difficult achievement in clinical practice; among these, certainly the high operator-dependency of the overall manufacturing process is one of the most crucial, limiting the scalability to industrial production and, thus, the spread of foam-replicated synthetic bone substitutes for effective use in routine management of bone defect. The present review opens a window on the versatile world of the foam replica technique, focusing the dissertation on scaffold properties analyzed in relation to various processing parameters, in order to better understand which are the real issues behind the bottleneck that still puts this technology on the Olympus of the most used techniques in laboratory practice, without moving, unfortunately, to a more concrete application. Specifically, scaffold morphology, mechanical and mass transport properties will be reviewed in detail, considering the various templates proposed till now by several research groups all over the world. In the end, a comprehensive overview of in vivo studies on bioactive glass foams will be provided, in order to put an emphasis on scaffold performances in a complex three-dimensional environment.


2020 ◽  
Vol 116 ◽  
pp. 111249
Author(s):  
Huiyu Zhao ◽  
Guojun Liang ◽  
Wenquan Liang ◽  
Qingchu Li ◽  
Bin Huang ◽  
...  

2020 ◽  
pp. 20200068
Author(s):  
Tabea Flügge ◽  
Ute Ludwig ◽  
Philipp Amrein ◽  
Florian Kernen ◽  
Kirstin Vach ◽  
...  

Objectives: Autologous bone grafts are the gold standard to augment deficient alveolar bone. Dimensional graft alterations during healing are not known as they are not accessible to radiography. Therefore, MRI was used to display autologous onlay bone grafts in vivo during early healing. Methods and materials: Ten patients with alveolar bone atrophy and autologous onlay grafts were included. MRI was performed with a clinical MR system and an intraoral coil preoperatively (t0), 1 week (t1), 6 weeks (t2) and 12 weeks (t3) postoperatively, respectively. The graft volumes were assessed in MRI by manual segmentation by three examiners. Graft volumes for each time point were calculated and dimensional alteration was documented. Cortical and cancellous proportions of bone grafts were assessed. The intraobserver and interobserver variability were calculated. Statistical analysis was performed using a mixed linear regression model. Results: Autologous onlay bone grafts with cortical and cancellous properties were displayed in vivo in eight patients over 12 weeks. The fixation screws were visible as signal voids with a thin hyperintense fringe. The calculated volumes were between 0.12–0.74 cm3 (t1), 0.15–0.73 cm3 (t2), and 0.17–0.64 cm3 (t3). Median changes of bone graft volumes of −15% were observed. There was no significant difference between the examiners (p = 0.3). Conclusions: MRI is eligible for the display and longitudinal observation of autologous onlay bone grafts. Image artifacts caused measurements deviations in some cases and minimized the precise assessment of graft volume. To the knowledge of the authors, this is the first study that used MRI for the longitudinal observation of autologous onlay bone grafts.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Xin Cai ◽  
Li Wu Zheng ◽  
Chun Lei Li ◽  
Li Ma ◽  
Martin Ehrbar ◽  
...  

Bioengineered bone substitutes might represent alternatives to autologous bone grafts in medically compromised patients due to reduced operation time and comorbidity. Due to the lack of an inherent vascular system their dimension is limited to the size of critical bone size defect. To overcome this shortcoming, the experiment tried to create heterotopic bone around vessels.In vivo, a two-component fibrin and thrombin gel containing recombinant bone morphogenic protein (rhBMP-2) and transglutamate vascular endothelial growth factor (TG-VEGF) in different ratios, respectively, was injected into a dimensionally stable membrane tube, wrapped around the femoral vessel bundle in twelve New Zealand white rabbits. Sacrifice occurred eight weeks postoperatively. Microcomputed tomography of the specimens showed significantly increased bone volume in the rhBMP-2 to TG-VEGF ratio of 10 to 1 group. Histology showed new bone formation in close proximity to the vessel bundle. Immunohistochemistry detected increased angiogenesis within the newly formed bone in the rhBMP-2 to TG-VEGF ratios of 3 to 1 and 5 to 1. Heterotopic bone was engineeredin vivoaround vessels using different rhBMP-2 and TG-VEGF ratios in a fibrin matrix injected into a dimensionally stable membrane tube which prevented direct contact with skeletal muscles.


Sign in / Sign up

Export Citation Format

Share Document