scholarly journals Take the shortcut – direct conversion of somatic cells into induced neural stem cells and their biomedical applications

FEBS Letters ◽  
2019 ◽  
Vol 593 (23) ◽  
pp. 3353-3369 ◽  
Author(s):  
Anita Erharter ◽  
Sandra Rizzi ◽  
Jerome Mertens ◽  
Frank Edenhofer
2014 ◽  
Vol 9 (4) ◽  
pp. 871-881 ◽  
Author(s):  
Sung Min Kim ◽  
Hannah Flaßkamp ◽  
Andreas Hermann ◽  
Marcos Jesús Araúzo-Bravo ◽  
Seung Chan Lee ◽  
...  

e-Neuroforum ◽  
2013 ◽  
Vol 19 (2) ◽  
Author(s):  
Marisa Karow ◽  
Benedikt Berninger

AbstractThe art of forging neurons: direct reprogramming of somatic cells into induced neu­ronal cells.Cellular reprogramming has shed new light on the plasticity of terminally differentiated cells and discloses novel strategies for cell-based therapies for neurological disorders. With accumulating knowledge of the programs underlying the genesis of the distinct neural cell types, especially with the identification of relevant transcription factors and microRNAs, reprogramming of somatic cells of different origins into induced neuronal cells or neural stem cells has been successfully achieved. Starting with the general con­cept of reprogramming we discuss here three different paradigms: 1) direct conversion of CNS-foreign cells such as skin fibroblasts into induced neuronal cells or neural stem cells; 2) transdifferentiation of CNS resident cells such as astrocytes and brain pericytes into induced neuronal cells; 3) reprogramming of one neuronal subtype into another. The latter has already been successfully achieved in vivo during early brain develop­ment, providing strong impulse for the attempt to succeed in direct reprogramming in situ for future brain repair.


Methods ◽  
2018 ◽  
Vol 133 ◽  
pp. 21-28 ◽  
Author(s):  
Ebrahim Shahbazi ◽  
Fahimeh Mirakhori ◽  
Vahid Ezzatizadeh ◽  
Hossein Baharvand

e-Neuroforum ◽  
2013 ◽  
Vol 19 (2) ◽  
Author(s):  
M. Karow ◽  
B. Berninger

AbstractCellular reprogramming has shed new light on the plasticity of terminally differentiated cells and unearthed novel strategies for cell-based therapies to treat neurological disor­ders. With accumulating knowledge of the programs underlying the genesis of the dis­tinct neural cell types, particularly the iden­tification of crucial transcription factors and microRNAs, reprogramming of somatic cells of different origins into induced neuronal cells or neural stem cells has been success­fully achieved. Starting with the general con­cept of reprogramming, we discuss three dif­ferent paradigms: (1) direct conversion of central nervous system (CNS) foreign cells such as skin fibroblasts into induced neuro­nal cells or neural stem cells; (2) transdiffer­entiation of CNS resident cells such as astro­cytes and brain pericytes into induced neuro­nal cells; (3) reprogramming of one neuronal subtype into another. The latter has already been successfully achieved in vivo during ear­ly brain development, providing a strong im­pulse to attempt direct reprogramming in si­tu for future brain repair.


Cell Reports ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. 441-452 ◽  
Author(s):  
Kyung-Rok Yu ◽  
Ji-Hee Shin ◽  
Jae-Jun Kim ◽  
Myung Guen Koog ◽  
Jin Young Lee ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 80-92
Author(s):  
Tae Hwan Kwak ◽  
Sai Hali ◽  
Sungmin Kim ◽  
Jonghun Kim ◽  
Hyeonwoo La ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Jae-Jun Kim ◽  
Ji-Hee Shin ◽  
Kyung-Rok Yu ◽  
Byung-Chul Lee ◽  
Insung Kang ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii88-ii88
Author(s):  
Alison Mercer-Smith ◽  
Wulin Jiang ◽  
Alain Valdivia ◽  
Juli Bago ◽  
Scott Floyd ◽  
...  

Abstract INTRODUCTION Non-small cell lung cancer (NSCLC) is the most common cancer to form brain metastases. Radiation treatment is standard-of-care, but recurrence is still observed in 40% of patients. An adjuvant treatment is desperately needed to track down and kill tumor remnants after radiation. Tumoritropic neural stem cells (NSCs) that can home to and deliver a cytotoxic payload offer potential as such an adjuvant treatment. Here we show the transdifferentiation of human fibroblasts into tumor-homing induced neural stem cells (hiNSCs) that secrete the cytotoxic protein TRAIL (hiNSC-TRAIL) and explore the use of hiNSC-TRAIL to treat NSCLC brain metastases. METHODS To determine the migratory capacity of hiNSCs, hiNSCs were infused intracerebroventricularly (ICV) into mice bearing established bilateral NSCLC H460 brain tumors. hiNSC accumulation at tumor foci was monitored using bioluminescent imaging and post-mortem fluorescent analysis. To determine synergistic effects of radiation with TRAIL on NSCLC, we performed in vitro co-culture assays and isobologram analysis. In vivo, efficacy was determined by tracking the progression and survival of mice bearing intracranial H460 treated with hiNSC-TRAIL alone or in combination with 2 Gy radiation. RESULTS/CONCLUSION Following ICV infusion, hiNSCs persisted in the brain for > 1 week and migrated from the ventricles to colocalize with bilateral tumor foci. In vitro, viability assays and isobologram analysis revealed the combination treatment of hiNSC-TRAIL and 2 Gy radiation induced synergistic killing (combination index=0.64). In vivo, hiNSC-TRAIL/radiation combination therapy reduced tumor volumes > 90% compared to control-treated animals while radiation-only and hiNSC-TRAIL-only treated mice showed 21% and 52% reduced volumes, respectively. Dual-treatment extended survival 40%, increasing survival from a median of 20 days in controls to 28 days in the treatment group. These results suggest hiNSC-TRAIL can improve radiation therapy for NSCLC brain metastases and could potentially improve outcomes for patients suffering from this aggressive form of cancer.


Sign in / Sign up

Export Citation Format

Share Document