K160 in the RNA‐binding domain of the orf virus virulence factor OV20.0 is critical for its functions in counteracting host antiviral defense

FEBS Letters ◽  
2021 ◽  
Author(s):  
Guan‐Ru Liao ◽  
Yeu‐Yang Tseng ◽  
Ching‐Yu Tseng ◽  
Ying‐Ping Huang ◽  
Ching‐Hsiu Tsai ◽  
...  
2002 ◽  
Vol 66 (3) ◽  
pp. 682-684 ◽  
Author(s):  
Takeshi HAYASHI ◽  
Maino TAHARA ◽  
Kenta IWASAKI ◽  
Yoshiaki KOUZUMA ◽  
Makoto KIMURA

1993 ◽  
Vol 268 (27) ◽  
pp. 20198-20204
Author(s):  
L.E. Donate ◽  
J.M. Valpuesta ◽  
C Mier ◽  
F Rojo ◽  
J.L. Carrascosa

Virology ◽  
1993 ◽  
Vol 195 (2) ◽  
pp. 780-785 ◽  
Author(s):  
J.Paul Taylor ◽  
Mondira Kundu ◽  
Kamel Khalili

2005 ◽  
Vol 86 (1) ◽  
pp. 225-229 ◽  
Author(s):  
Masamichi Isogai ◽  
Nobuyuki Yoshikawa

The RNA-binding properties of the cell-to-cell movement protein (MP) of Apple chlorotic leaf spot virus were analysed. MP was expressed in Escherichia coli and was used in UV-crosslinking analysis, using a digoxigenin–UTP-labelled RNA probe and gel-retardation analysis. The analyses demonstrated that MP bound cooperatively to single-stranded RNA (ssRNA). When analysed for NaCl dependence of the RNA-binding activity, the majority of the MP could bind ssRNA even in binding buffer with 1 M NaCl. Furthermore, competition binding experiments showed that the MP bound preferentially to ssRNA and single-stranded DNA without sequence specificity. MP deletion mutants were used to identify the RNA-binding domain by UV-crosslinking analysis. Amino acid residues 82–126 and 127–287 potentially contain two independently active, single-stranded nucleic acid-binding domains.


Sign in / Sign up

Export Citation Format

Share Document