scholarly journals Twenty-first century reversal of the surface ozone seasonal cycle over the northeastern United States

2014 ◽  
Vol 41 (20) ◽  
pp. 7343-7350 ◽  
Author(s):  
O. E. Clifton ◽  
A. M. Fiore ◽  
G. Correa ◽  
L. W. Horowitz ◽  
V. Naik
2016 ◽  
Vol 29 (12) ◽  
pp. 4327-4345 ◽  
Author(s):  
Harrison Li ◽  
Brian A. Colle

Abstract Future changes in the frequency of environmental conditions conducive for convective storm days (“CE days”) are determined for the northeastern United States (NEUS) during the warm seasons (April–September) of the twenty-first century. Statistical relationships between historical runs of seven models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) and radar-classified convective storm days are developed using linear discriminant analysis (LDA), and these relationships are then applied to analyze changes in the convective environment under the high-emissions representative concentration pathway 8.5 (RCP8.5) scenario over the period 2006–99. The 1996–2007 warm seasons are used to train the LDA thresholds using convective precipitation from two reanalysis datasets and radar data, and the 1979–95 and 2008–10 warm seasons are used to verify these thresholds. For the CMIP5 historical period (1979–2005), the frequency of warm season CE days averaged across the CMIP5 models is slightly greater than that derived using reanalysis data, although both methods indicate a slight increasing trend through the historical period. Between 2006 and 2099, warm season CE day frequency is predicted to increase substantially at an average rate of 4–5 days decade−1 (50%–80% increase over the entire period). These changes are mostly attributed to a predicted 30%–40% increase in midlevel precipitable water between the historical period and the last few decades of the twenty-first century. Consistent with previous studies, there is decreasing deep-layer vertical wind shear as a result of a weakening horizontal temperature gradient, but this is outweighed by increases in instability led by the moisture increases.


Author(s):  
James Lee Brooks

AbstractThe early part of the twenty-first century saw a revolution in the field of Homeland Security. The 9/11 attacks, shortly followed thereafter by the Anthrax Attacks, served as a wakeup call to the United States and showed the inadequacy of the current state of the nation’s Homeland Security operations. Biodefense, and as a direct result Biosurveillance, changed dramatically after these tragedies, planting the seeds of fear in the minds of Americans. They were shown that not only could the United States be attacked at any time, but the weapon could be an invisible disease-causing agent.


2013 ◽  
Vol 13 (S1) ◽  
pp. 153-164 ◽  
Author(s):  
Christopher Selman ◽  
Vasu Misra ◽  
Lydia Stefanova ◽  
Steven Dinapoli ◽  
Thomas J. Smith III

Author(s):  
Ellen Rutten

This conclusion reflects on today's dreams of renewing or revitalizing sincerity and rejects the notion that they are outdated or do not deserve any of our attention. It cites the work of several scholars to show that sincerity is anything but obsolete in twenty-first-century popular culture. Indeed, today's strivings to renew sincerity have not been neglected by scholars such as R. Jay Magill Jr., Epstein, and Yurchak. The rhetoric on new sincerity has been addressed in thoughtful analyses of contemporary culture that have helped the author in crafting a comprehensive and geographically inclusive analysis of present-day sincerity rhetoric. In post-Communist Russia, debates on a shift to late or post-postmodern cultural paradigms are thriving with at least as much fervor as—and possibly more than—in Western Europe or the United States. This conclusion discusses the newly gained insights which the author's sincerity study offers.


2012 ◽  
Vol 25 (18) ◽  
pp. 6359-6374 ◽  
Author(s):  
John G. Dwyer ◽  
Michela Biasutti ◽  
Adam H. Sobel

Abstract When forced with increasing greenhouse gases, global climate models project a delay in the phase and a reduction in the amplitude of the seasonal cycle of surface temperature, expressed as later minimum and maximum annual temperatures and greater warming in winter than in summer. Most of the global mean changes come from the high latitudes, especially over the ocean. All 24 Coupled Model Intercomparison Project phase 3 models agree on these changes and, over the twenty-first century, average a phase delay of 5 days and an amplitude decrease of 5% for the global mean ocean surface temperature. Evidence is provided that the changes are mainly driven by sea ice loss: as sea ice melts during the twenty-first century, the previously unexposed open ocean increases the effective heat capacity of the surface layer, slowing and damping the temperature response. From the tropics to the midlatitudes, changes in phase and amplitude are smaller and less spatially uniform than near the poles but are still prevalent in the models. These regions experience a small phase delay but an amplitude increase of the surface temperature cycle, a combination that is inconsistent with changes to the effective heat capacity of the system. The authors propose that changes in this region are controlled by changes in surface heat fluxes.


Sign in / Sign up

Export Citation Format

Share Document