scholarly journals Ionospheric response to the 2009 sudden stratospheric warming over the equatorial, low, and middle latitudes in the South American sector

2015 ◽  
Vol 120 (9) ◽  
pp. 7889-7902 ◽  
Author(s):  
P. R. Fagundes ◽  
L. P. Goncharenko ◽  
A. J. Abreu ◽  
K. Venkatesh ◽  
M. Pezzopane ◽  
...  
Space Weather ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 1230-1240 ◽  
Author(s):  
Guoqi Liu ◽  
Wengeng Huang ◽  
Hua Shen ◽  
Ercha Aa ◽  
Manxia Li ◽  
...  

2014 ◽  
Vol 119 (9) ◽  
pp. 7858-7869 ◽  
Author(s):  
Tzu-Wei Fang ◽  
Tim Fuller-Rowell ◽  
Houjun Wang ◽  
Rashid Akmaev ◽  
Fei Wu

2016 ◽  
Vol 16 (8) ◽  
pp. 4885-4896 ◽  
Author(s):  
Sheng-Yang Gu ◽  
Han-Li Liu ◽  
Xiankang Dou ◽  
Tao Li

Abstract. The influence of the sudden stratospheric warming (SSW) on a quasi-2-day wave (QTDW) with westward zonal wave number 3 (W3) is investigated using the Thermosphere–Ionosphere–Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The summer easterly jet below 90 km is strengthened during an SSW, which results in a larger refractive index and thus more favorable conditions for the propagation of W3. In the winter hemisphere, the Eliassen–Palm (EP) flux diagnostics indicate that the strong instabilities at middle and high latitudes in the mesopause region are important for the amplification of W3, which is weakened during SSW periods due to the deceleration or even reversal of the winter westerly winds. Nonlinear interactions between the W3 and the wave number 1 stationary planetary wave produce QTDW with westward zonal wave number 2 (W2). The meridional wind perturbations of the W2 peak in the equatorial region, while the zonal wind and temperature components maximize at middle latitudes. The EP flux diagnostics indicate that the W2 is capable of propagating upward in both winter and summer hemispheres, whereas the propagation of W3 is mostly confined to the summer hemisphere. This characteristic is likely due to the fact that the phase speed of W2 is larger, and therefore its waveguide has a broader latitudinal extension. The larger phase speed also makes W2 less vulnerable to dissipation and critical layer filtering by the background wind when propagating upward.


2015 ◽  
Vol 120 (9) ◽  
pp. 7873-7888 ◽  
Author(s):  
M. V. Klimenko ◽  
V. V. Klimenko ◽  
F. S. Bessarab ◽  
Yu N. Korenkov ◽  
Hanli Liu ◽  
...  

2020 ◽  
pp. 241-254
Author(s):  
A.I. Pogoreltsev ◽  
O.G. Aniskina ◽  
A.Y. Kanukhina ◽  
T.S. Ermakova ◽  
A.I. Ugryumov ◽  
...  

Analysis of the dynamical regime changes in the stratosphere during different phases of the Sudden Stratospheric Warming (SSW) that has been observed in January 2013 is presented. The different mechanisms of SSW influence on the tropospheric circulation through the stationary planetary waves (SPWs) reflection and/or increase in SPWs activity due to nonlinear interaction with the mean flow and their subsequent propagation into the troposphere are discussed. Three-dimensional wave activity flux and its divergence are determined using the UK Met Office data; the synoptic situation and its changes during the SSW events are analyzed. The wave activity penetrates downward from stratosphere into the troposphere and can affect weather processes during the SSW and right afterwards. It is this time that polar anticyclones can be formed at high latitudes, which quickly go southward along meridional directions and then deviate to the East at middle latitudes. Interestingly, the locations of polar anticyclone formations and subsequent displacements correspond to the regions of maximal horizontal wave activity fluxes connected with stratospheric processes. The results obtained allow us to suggest that accounting of stratospheric processes and their influence on the troposphere in winter season can improve the middle-range forecast of anticyclone formation and cold weather events at middle latitudes.


2021 ◽  
Author(s):  
Larisa Goncharenko ◽  
V Lynn Harvey ◽  
Katelynn Greer ◽  
Shun-Rong Zhang ◽  
Anthea Coster

<p>Limited observational evidence indicates that ionospheric changes caused by Arctic SSWs propagate to at least the middle latitudes in the Southern Hemisphere. However, it is not known if similar ionospheric anomalies are produced by Antarctic SSWs, mostly because Antarctic SSWs occur less often than the Arctic events. The sudden stratospheric warming of September 2019 has provided a perfect opportunity to investigate whether SSW are linked to upper atmospheric anomalies at middle latitudes of the opposite hemisphere. In this study we provide an overview of thermospheric and ionospheric anomalies observed in September 2019 at middle latitudes in the Northern Hemisphere. Our results indicate persistent and strong positive anomalies in total electron content and thermospheric O/N2 ratio observed in the western region of USA. Central and eastern regions of USA do not experience similar positive perturbations and show mostly moderate suppression of TEC reaching 20-40% of the baseline. Both positive and negative anomalies are observed over the central Europe. We discuss potential mechanisms that could be responsible for the observed features and suggest that regional differences in TEC response could be related to modulation of thermospheric winds by SSW and large declination angle over Western US.</p>


Sign in / Sign up

Export Citation Format

Share Document