tropospheric circulation
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 27)

H-INDEX

29
(FIVE YEARS 2)

MAUSAM ◽  
2022 ◽  
Vol 44 (4) ◽  
pp. 359-364
Author(s):  
OLUWAGBEMIGA O. JEGEDE

This paper focusses on some aspects or the West African monsoonal circulation observed during the period 15 July-l0 August 1979 of the PGGE, as derived from the satellite cloud windvectors. Temporal averages of the computed winsfields reveal that the flow at the low level is southerly (monsoonal), and Its line of discontinuity with the continental northeasterly was found at approximately 16°-18°N, lying about 300 km south of the accepted mean position. At both the middle and upper tropospheres the flow is easterly with axis about 12o-14,N and, latitude 8 No respectively, such that it is a circulation south of the axis and northwards, it is anticyclonic. The satellite-observed tropospheric circulation IS then discussed in relation to the, weather manifestations over the sub-region typical of the July / August period.   The mass fields obtained from our gridded satellite-winds indicate that inflow into the land area occur mainly at the lowest layer (1000:850 hPa), whereas at the upper, levels (that is, above 850 hPa) it is predominantly an outflow, The tropospheric average gives a net mass for divergence from within the area, The significance of this result in relation to the observed weather phenomenology of a temporary cessation of the monsoon precipitations occurring about the peak of the season IS also discussed.


2021 ◽  
Vol 21 (24) ◽  
pp. 18499-18518
Author(s):  
Chenrui Diao ◽  
Yangyang Xu ◽  
Shang-Ping Xie

Abstract. Anthropogenic aerosols (AAs) induce global and regional tropospheric circulation adjustments due to the radiative energy perturbations. The overall cooling effects of AA, which mask a portion of global warming, have been the subject of many studies but still have large uncertainty. The interhemispheric contrast in AA forcing has also been demonstrated to induce a major shift in atmospheric circulation. However, the zonal redistribution of AA emissions since start of the 20th century, with a notable decline in the Western Hemisphere (North America and Europe) and a continuous increase in the Eastern Hemisphere (South Asia and East Asia), has received less attention. Here we utilize four sets of single-model initial-condition large-ensemble simulations with various combinations of external forcings to quantify the radiative and circulation responses due to the spatial redistribution of AA forcing during 1980–2020. In particular, we focus on the distinct climate responses due to fossil-fuel-related (FF) aerosols emitted from the Western Hemisphere (WH) versus the Eastern Hemisphere (EH). The zonal (west to east) redistribution of FF aerosol emission since the 1980s leads to a weakening negative radiative forcing over the WH mid-to-high latitudes and an enhancing negative radiative forcing over the EH at lower latitudes. Overall, the FF aerosol leads to a northward shift of the Hadley cell and an equatorward shift of the Northern Hemisphere (NH) jet stream. Here, two sets of regional FF simulations (Fix_EastFF1920 and Fix_WestFF1920) are performed to separate the roles of zonally asymmetric aerosol forcings. We find that the WH aerosol forcing, located in the extratropics, dominates the northward shift of the Hadley cell by inducing an interhemispheric imbalance in radiative forcing. On the other hand, the EH aerosol forcing, located closer to the tropics, dominates the equatorward shift of the NH jet stream. The consistent relationship between the jet stream shift and the top-of-atmosphere net solar flux (FSNTOA) gradient suggests that the latter serves as a rule-of-thumb guidance for the expected shift of the NH jet stream. The surface effect of EH aerosol forcing (mainly from low- to midlatitudes) is confined more locally and only induces weak warming over the northeastern Pacific and North Atlantic. In contrast, the WH aerosol reduction leads to a large-scale warming over NH mid-to-high latitudes that largely offsets the cooling over the northeastern Pacific due to EH aerosols. The simulated competing roles of regional aerosol forcings in driving atmospheric circulation and surface temperature responses during the recent decades highlight the importance of considering zonally asymmetric forcings (west to east) and also their meridional locations within the NH (tropical vs. extratropical).


2021 ◽  
pp. 1-51

Abstract As the leading mode of Pacific variability, the El Niño-Southern Oscillation (ENSO) causes vast and wide-spread climatic impacts, including in the stratosphere. Following discovery of a stratospheric pathway of ENSO to the Northern Hemisphere surface, here we aim to investigate if there is a substantial Southern Hemisphere (SH) stratospheric pathway in relation to austral winter ENSO events. Large stratospheric anomalies connected to ENSO occur on average at high SH latitudes as early as August, peaking at around 10 hPa. An overall colder austral spring Antarctic stratosphere is generally associated with the warm phase of the ENSO cycle, and vice versa. This behavior is robust among reanalysis and six separate model ensembles encompassing two different model frameworks. A stratospheric pathway is identified by separating ENSO events that exhibit a stratospheric anomaly from those that don’t and comparing to stratospheric extremes that occur during neutral-ENSO years. The tropospheric eddy-driven jet response to the stratospheric ENSO pathway is the most robust in the spring following a La Niña, but extends into summer, and is more zonally-symmetric compared to the tropospheric ENSO teleconnection. The magnitude of the stratospheric pathway is weaker compared to the tropospheric pathway and therefore when it is present, has a secondary role. For context, the magnitude is approximately half that of the eddy-driven jet modulation due to austral spring ozone depletion in the model simulations. This work establishes that the stratospheric circulation acts as an intermediary in coupling ENSO variability to variations in the austral spring and summer tropospheric circulation.


2021 ◽  
Author(s):  
Jonas Spaeth ◽  
Thomas Birner

Abstract. The Arctic Oscillation (AO) describes a seesaw pattern of variations in atmospheric mass over the polar cap. It is by now well established that the AO pattern is in part determined by the state of the stratosphere. In particular, sudden stratospheric warmings (SSWs) are known to nudge the tropospheric circulation toward a more negative phase of the AO, which is associated with a more equatorward shifted jet and enhanced likelihood for blocking and cold air outbreaks in mid-latitudes. SSWs are also thought to contribute to the occurrence of extreme AO events. However, statistically robust results about such extremes are difficult to obtain from observations or meteorological (re-)analyses due to the limited sample size of SSW events in the observational record (roughly 6 SSWs per decade). Here we exploit a large set of extended-range ensemble forecasts within the subseasonal-to-seasonal (S2S) framework to obtain an improved characterization of the modulation of AO extremes due to stratosphere-troposphere coupling. Specifically, we greatly boost the sample size of stratospheric events by using potential SSWs (p-SSWs), i.e., SSWs that are predicted to occur in individual forecast ensemble members regardless of whether they actually occurred in the real atmosphere. For example, for the ECMWF S2S ensemble this gives us a total of 6101 p-SSW events for the period 1997–2021. A standard lag-composite analysis around these p-SSWs validates our approach, i.e., the associated composite evolution of stratosphere-troposphere coupling matches the known evolution based on reanalyses data around real SSW events. Our statistical analyses further reveal that following p-SSWs, relative to climatology: 1) persistently negative AO states (> 1 week duration) are 16 % more likely, 2) the likelihood for extremely negative AO states (< −3σ) is enhanced by at least 35 %, while that for extremely positive AO states (> +3σ) is reduced to almost zero, 3) a p-SSW preceding an extremely negative AO state within 4 weeks is causal for this AO extreme (in a statistical sense) up to a degree of 27 %. A corresponding analysis relative to strong stratospheric vortex events reveals similar insights into the stratospheric modulation of positive AO extremes.


2021 ◽  
Author(s):  
Chenrui Diao ◽  
Yangyang Xu ◽  
Shang-Ping Xie

Abstract. Anthropogenic Aerosols (AA) induce global and regional tropospheric circulation adjustments due to the radiative energy perturbations. The overall cooling effects of AA since the pre-industrial (PI) era, to mask a portion of global warming, have been the subject of many studies with large uncertainty remaining. The interhemispheric contrast in AA forcing has also been demonstrated to induce a major shift in atmospheric circulation. The zonally heterogeneous changes in AA emissions since the late 20th century, with a notable decline in the Western Hemisphere and continuous increase in the Eastern Hemisphere, received less attention. Here we utilize four sets of single-model initial-condition large-ensemble simulations with various combinations of external forcings to quantify the different radiative and circulation responses due to aerosol emissions changes during 1980-2020. In particular, we focus on the distinct climate responses to Fossil-Fuel (FF) related aerosol from Western Hemisphere (WH) versus Eastern Hemisphere (EH). The zonal and meridional redistribution of FF aerosols from WH to EH results in negative radiative forcing over Asia and positive radiative forcing over North America and Europe. This leads to a counterclockwise anomaly of zonal mean stream function over the tropics (i.e. a northward shift of Hadley cell) and stronger equatorward shift of the Northern Hemisphere (NH) jet stream, consistent with the thermal wind argument with the gradient of surface air temperature (SAT) as a predictive metric. Two sets of regional FF simulations (Fix_EastFF1920 and Fix_WestFF1920) are performed and reveals the dominating role of WH forcing due to aerosol reduction in the NH. The Aerosol reduction over WH mid-to-high latitudes dominates the warming over NH mid-to-high latitudes. The increased aerosol over the EH low-to-mid latitudes is confined more locally but also induces slight warming over the northeastern Pacific and North Atlantic. The competing role of FF forcing originating from EH and WH in shaping tropospheric circulation and surface climate response indicates the importance of both zonal and meridional distribution of aerosol forcing within the NH, and previous idealized models that only consider the zonal difference of aerosol emission may oversimplify the real aerosol forcing.


2021 ◽  
Vol 2 (2) ◽  
pp. 453-474
Author(s):  
Amy H. Butler ◽  
Daniela I. V. Domeisen

Abstract. Every spring, the stratospheric polar vortex transitions from its westerly wintertime state to its easterly summertime state due to seasonal changes in incoming solar radiation, an event known as the “final stratospheric warming” (FSW). While FSWs tend to be less abrupt than reversals of the boreal polar vortex in midwinter, known as sudden stratospheric warming (SSW) events, their timing and characteristics can be significantly modulated by atmospheric planetary-scale waves. While SSWs are commonly classified according to their wave geometry, either by how the vortex evolves (whether the vortex displaces off the pole or splits into two vortices) or by the dominant wavenumber of the vortex just prior to the SSW (wave-1 vs. wave-2), little is known about the wave geometry of FSW events. We here show that FSW events for both hemispheres in most cases exhibit a clear wave geometry. Most FSWs can be classified into wave-1 or wave-2 events, but wave-3 also plays a significant role in both hemispheres. The timing and classification of the FSW are sensitive to which pressure level the FSW central date is defined, particularly in the Southern Hemisphere (SH) where trends in the FSW dates associated with ozone depletion and recovery are more evident at 50 than 10 hPa. However, regardless of which FSW definition is selected, we find the wave geometry of the FSW affects total column ozone anomalies in both hemispheres and tropospheric circulation over North America. In the Southern Hemisphere, the timing of the FSW is strongly linked to both total column ozone before the event and the tropospheric circulation after the event.


2021 ◽  
Author(s):  
Gabriel Chiodo ◽  
William T. Ball ◽  
Peer Nowack ◽  
Clara Orbe ◽  
James Keeble ◽  
...  

&lt;p&gt;Previous studies indicate a possible role of stratospheric ozone chemistry feedbacks in the climate response to 4xCO2, either via a reduction in equilibrium climate sensitivity (ECS) or via changes in the tropospheric circulation (Nowack et al., 2015; Chiodo and Polvani, 2017). However, these effects are subject to uncertainty. Part of the uncertainty may stem from the dependency of the feedback on the pattern of the ozone response, as the radiative efficiency of ozone largely depends on its vertical distribution (Lacis et al., 1990). Here, an analysis is presented of the ozone layer response to 4xCO2 in chemistry&amp;#8211;climate models (CCMs) which participated to CMIP inter-comparisons. In a previous study using CMIP5 models, it has been shown that under 4xCO2, ozone decreases in the tropical lower stratosphere, and increases over the high latitudes and throughout the upper stratosphere (Chiodo et al., 2018). It was also found that a substantial portion of the spread in the tropical column ozone is tied to inter-model spread in tropical upwelling, which is in turn tied to ECS. Here, we revisit this connection using 4xCO2 data from CMIP6, thereby exploiting the larger number of CCMs available than in CMIP5. In addition, we explore the linearity of the ozone response, by complementing the analysis with simulations using lower CO2 forcing levels (2xCO2). We show that the pattern of the ozone response is similar to CMIP5. In some models (e.g. WACCM), we find larger ozone responses in CMIP6 than in CMIP5, partly because of the larger ECS and thus larger upwelling response in the tropical pipe. In this presentation, we will discuss the relationship between radiative forcing, transport and ozone, as well as further implications for CMIP6 models.&lt;/p&gt;


2021 ◽  
Author(s):  
Marisol Osman ◽  
Theodore Shepherd ◽  
Carolina Vera

&lt;p&gt;The influence of El Nin&amp;#771;o Southern Oscillation (ENSO) and the Stratospheric Polar Vortex (SPV) on the zonal asymmetries in the Southern Hemisphere atmospheric circulation during spring and summer is examined. The main objective is to explore if the SPV can modulate the ENSO teleconnections in the extratropics. We use a large ensemble of seasonal hindcasts from the European Centre for Medium-Range Weather Forecasts Integrated Forecast System to provide a much larger sample size than is possible from the observations alone.&lt;/p&gt;&lt;p&gt;We find a small but statistically significant relationship between ENSO and the SPV, with El Nin&amp;#771;o events occurring with weak SPV and La Nin&amp;#771;a events occurring with strong SPV more often than expected by chance, in agreement with previous works. We show that the zonally asymmetric response to ENSO and SPV can be mainly explained by a linear combination of the response to both forcings, and that they can combine constructively or destructively. From this perspective, we find that the tropospheric asymmetries in response to ENSO are more intense when El Nin&amp;#771;o events occur with weak SPV and La Nin&amp;#771;a events occur with strong SPV, at least from September through December. In the stratosphere, the ENSO teleconnections are mostly confounded by the SPV signal. The analysis of Rossby Wave Source and of wave activity shows that both are stronger when El Nin&amp;#771;o events occur together with weak SPV, and when La Nin&amp;#771;a events occur together with strong SPV.&lt;/p&gt;


2021 ◽  
Author(s):  
Kathrin Finke ◽  
Abdel Hannachi

&lt;p&gt;Stratospheric variability has become increasingly popular due to its potential impact on the tropospheric circulation. Extreme states of the stratospheric polar vortex have been associated with reoccurring tropospheric weather patterns more than 2-3 weeks after the initial stratospheric signal. Standard linear regression methods used to assess the statistical stratosphere-troposphere connection estimate the distribution's mean effect of a stratospheric variable as a predictor on a tropospheric response variable. However, &amp;#160;supplementary information of the impact of extreme stratospheric behavior is hidden in the tails of the distribution, revealing a different behavior than the mean. Therefore, we use quantile regression, a method that enables us to model the complete conditional distribution of the response variable. This presentation explores various quantiles of the conditional distribution to investigate the impact of stratospheric variability on the tropospheric circulation using the ERA5 reanalysis dataset. Comparison between (lagged) linear and (lagged) quantile regression reveals significant differences making the latter method a neat tool that offers valuable information about the statistical connection between the stratosphere and the troposphere.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document