scholarly journals Heat content variability in the North Atlantic Ocean in ocean reanalyses

2015 ◽  
Vol 42 (8) ◽  
pp. 2901-2909 ◽  
Author(s):  
Sirpa Häkkinen ◽  
Peter B. Rhines ◽  
Denise L. Worthen
Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Sandro F. Veiga ◽  
Emanuel Giarolla ◽  
Paulo Nobre ◽  
Carlos A. Nobre

Important features of the Atlantic meridional mode (AMM) are not fully understood. We still do not know what determines its dominant decadal variability or the complex physical processes that sustain it. Using reanalysis datasets, we investigated the influence of the North Atlantic Ocean variability on the dominant decadal periodicity that characterizes the AMM. Statistical analyses demonstrated that the correlation between the sea surface temperature decadal variability in the Atlantic Ocean and the AMM time series characterizes the Atlantic multidecadal oscillation (AMO). This corroborates previous studies that demonstrated that the AMO precedes the AMM. A causal inference with a newly developed rigorous and quantitative causality analysis indicates that the AMO causes the AMM. To further understand the influence of the subsurface ocean on the AMM, the relationship between the ocean heat content (0–300 m) decadal variability and AMM was analyzed. The results show that although there is a significant zero-lag correlation between the ocean heat content in some regions of the North Atlantic (south of Greenland and in the eastern part of the North Atlantic) and the AMM, their cause-effect relationship on decadal time scales is unlikely. By correlating the AMO with the ocean heat content (0–300 m) decadal variability, the former precedes the latter; however, the causality analysis shows that the ocean heat content variability drives the AMO, corroborating several studies that point out the dominant role of the ocean heat transport convergence on AMO.


2012 ◽  
Vol 25 (10) ◽  
pp. 3619-3628 ◽  
Author(s):  
Xiaoming Zhai ◽  
Luke Sheldon

Abstract The upper-ocean heat content of the North Atlantic has undergone significant changes over the last 50 years but the underlying physical mechanisms are not yet well understood. In the present study, the authors examine the North Atlantic ocean heat content change in the upper 700 m between the 1955–70 and 1980–95 periods. Consistent with previous studies, the large-scale pattern consists of warming of the tropics and subtropics and cooling of the subpolar ocean. However, this study finds that the most significant heat content change in the North Atlantic during these two time periods is the warming of the Gulf Stream region. Numerical experiments strongly suggest that this warming in the Gulf Stream region is largely driven by changes of the large-scale wind forcing. Furthermore, the increased ocean heat content in the Gulf Stream region appears to feedback on to the atmosphere, resulting in warmer surface air temperature and enhanced precipitation there.


2018 ◽  
Vol 612 ◽  
pp. 1141-1148 ◽  
Author(s):  
Min Zhang ◽  
Yuanling Zhang ◽  
Qi Shu ◽  
Chang Zhao ◽  
Gang Wang ◽  
...  

2021 ◽  
Vol 56 (7-8) ◽  
pp. 2027-2056
Author(s):  
Sandra M. Plecha ◽  
Pedro M. M. Soares ◽  
Susana M. Silva-Fernandes ◽  
William Cabos

Eos ◽  
1986 ◽  
Vol 67 (44) ◽  
pp. 835 ◽  
Author(s):  
W. E. Esaias ◽  
G. C. Feldman ◽  
C. R. McClain ◽  
J. A. Elrod

Sign in / Sign up

Export Citation Format

Share Document