San Andreas fault zone velocity structure at SAFOD at core, log, and seismic scales

2015 ◽  
Vol 120 (7) ◽  
pp. 4983-4997 ◽  
Author(s):  
Tamara N. Jeppson ◽  
Harold J. Tobin
1995 ◽  
Vol 85 (6) ◽  
pp. 1805-1820
Author(s):  
Denis Jongmans ◽  
Peter E. Malin

Abstract High-gain three-component seismometers from 0- to 1-km deep along the Varian A-1 well at Parkfield, California, were used to record the waveforms of nearby microearthquakes. Despite being in the thick Tertiary sediments of the Parkfield Syncline, the S-wave amplification at this site is only about a factor of 3. The spectral content and spectral ratios of S waves along the well show that the average Qs in the top 1 km at this site is 37, with the Qs in different subintervals varying between 8 and 65. Based on initial S-wave polarizations, a complex S-wave velocity structure must exist at and below the Varian site. This structure appears to include position-dependent anisotropy as well as steep lateral velocity gradients. At a depth of 1 km, S-wave splitting parallel and normal to the San Andreas fault zone is consistently observed. This splitting scales at roughly 0.01 sec/km. Subsequent to the split S waves, the particle motion seems to be controlled by event focal mechanism. Above 1 km, the upgoing S waves attenuate and change directions of polarization, with a new splitting rate of 0.1 sec/km. Uniquely, for some events on the San Andreas fault immediately below the Varian site, large, post-S-wave signals with normal dispersion are present. We propose that these phases are fault-zone guided waves channeled from the San Andreas fault to the Varian site along the Gold Hill fault.


Geology ◽  
1975 ◽  
Vol 3 (8) ◽  
pp. 437 ◽  
Author(s):  
Robert L. Kovach ◽  
Amos Nur ◽  
Robert L. Wesson ◽  
Russell Robinson

1983 ◽  
Vol 73 (6A) ◽  
pp. 1701-1720
Author(s):  
R. Feng ◽  
T. V. McEvilly

Abstract A seismic reflection profile crossing the San Andreas fault zone in central California was conducted in 1978. Results are complicated by the extreme lateral heterogeneity and low velocities in the fault zone. Other evidence for severe lateral velocity change across the fault zone lies in hypocenter bias and nodal plane distortion for earthquakes on the fault. Conventional interpretation and processing methods for reflection data are hard-pressed in this situation. Using the inverse ray method of May and Covey (1981), with an initial model derived from a variety of data and the impedance contrasts inferred from the preserved amplitude stacked section, an iterative inversion process yields a velocity model which, while clearly nonunique, is consistent with the various lines of evidence on the fault zone structure.


2008 ◽  
Vol 98 (6) ◽  
pp. 2948-2961 ◽  
Author(s):  
C. C. Tsai ◽  
R. D. Catchings ◽  
M. R. Goldman ◽  
M. J. Rymer ◽  
P. Schnurle ◽  
...  

2004 ◽  
Vol 31 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
Yong-Gang Li ◽  
John E. Vidale ◽  
Elizabeth S. Cochran

Geophysics ◽  
1967 ◽  
Vol 32 (2) ◽  
pp. 297-301 ◽  
Author(s):  
S. N. Domenico

A gravity profile was obtained from closely spaced readings along a traverse approximately nine miles in length across the San Andreas fault zone immediately south of Palmdale, California in the western Mojave Desert. Corrected gravity values show a slight but distinctive minimum associated with the fault zone which may be attributed to the reduced density of the shattered rock masses in the fault zone. The existence of this minimum suggests that major fault zones may be traced across terrain, on which surface expression of the fault does not exist, by successive profiles across the suspected position of the fault zone.


Sign in / Sign up

Export Citation Format

Share Document