scholarly journals Modeled sensitivity of the N orthwestern P acific upper‐ocean response to tropical cyclones in a fully coupled climate model with varying ocean grid resolution

2016 ◽  
Vol 121 (1) ◽  
pp. 586-601 ◽  
Author(s):  
Hui Li ◽  
Ryan L. Sriver ◽  
Marlos Goes
2019 ◽  
Vol 11 (20) ◽  
pp. 2431 ◽  
Author(s):  
Jue Ning ◽  
Qing Xu ◽  
Tao Feng ◽  
Han Zhang ◽  
Tao Wang

The upper ocean thermodynamic and biological responses to two sequential tropical cyclones (TCs) over the Northwestern Pacific Ocean were investigated using multi-satellite datasets, in situ observations and numerical model outputs. During Kalmaegi and Fung-Wong, three distinct cold patches were observed at sea surface. The locations of these cold patches are highly correlated with relatively shallower depth of the 26 °C isotherm and mixed layer depth (MLD) and lower upper ocean heat content. The enhancement of surface chlorophyll a (chl-a) concentration was detected in these three regions as well, mainly due to the TC-induced mixing and upwelling as well as the terrestrial runoff. Moreover, the pre-existing ocean cyclonic eddy (CE) has been found to significantly modulate the magnitude of surface cooling and chl-a increase. With the deepening of the MLD on the right side of TCs, the temperature of the mixed layer decreased and the salinity increased. The sequential TCs had superimposed effects on the upper ocean response. The possible causes of sudden track change in sequential TCs scenario were also explored. Both atmospheric and oceanic conditions play noticeable roles in abrupt northward turning of the subsequent TC Fung-Wong.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Han Zhang ◽  
Hailun He ◽  
Wen-Zhou Zhang ◽  
Di Tian

AbstractTropical cyclones (TCs) are strong natural hazards that are important for local and global air–sea interactions. This manuscript briefly reviews the knowledge about the upper ocean responses to TCs, including the current, surface wave, temperature, salinity and biological responses. TCs usually cause upper ocean near-inertial currents, increase strong surface waves, cool the surface ocean, warm subsurface ocean, increase sea surface salinity and decrease subsurface salinity, causing plankton blooms. The upper ocean response to TCs is controlled by TC-induced mixing, advection and surface flux, which usually bias to the right (left) side of the TC track in the Northern (Southern) Hemisphere. The upper ocean response usually recovers in several days to several weeks. The characteristics of the upper ocean response mainly depend on the TC parameters (e.g. TC intensity, translation speed and size) and environmental parameters (e.g. ocean stratification and eddies). In recent decades, our knowledge of the upper ocean response to TCs has improved because of the development of observation methods and numerical models. More processes of the upper ocean response to TCs can be studied by researchers in the future.


2007 ◽  
Vol 25 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Zenghong Liu ◽  
Jianping Xu ◽  
Bokang Zhu ◽  
Chaohui Sun ◽  
Lifeng Zhang

2019 ◽  
Vol 124 (6) ◽  
pp. 3664-3681 ◽  
Author(s):  
A. Doeschate ◽  
G. Sutherland ◽  
H. Bellenger ◽  
S. Landwehr ◽  
L. Esters ◽  
...  

2006 ◽  
Vol 19 (16) ◽  
pp. 3973-3987 ◽  
Author(s):  
Patrick Wetzel ◽  
Ernst Maier-Reimer ◽  
Michael Botzet ◽  
Johann Jungclaus ◽  
Noel Keenlyside ◽  
...  

Abstract The influence of phytoplankton on the seasonal cycle and the mean global climate is investigated in a fully coupled climate model. The control experiment uses a fixed attenuation depth for shortwave radiation, while the attenuation depth in the experiment with biology is derived from phytoplankton concentrations simulated with a marine biogeochemical model coupled online to the ocean model. Some of the changes in the upper ocean are similar to the results from previous studies that did not use interactive atmospheres, for example, amplification of the seasonal cycle; warming in upwelling regions, such as the equatorial Pacific and the Arabian Sea; and reduction in sea ice cover in the high latitudes. In addition, positive feedbacks within the climate system cause a global shift of the seasonal cycle. The onset of spring is about 2 weeks earlier, which results in a more realistic representation of the seasons. Feedback mechanisms, such as increased wind stress and changes in the shortwave radiation, lead to significant warming in the midlatitudes in summer and to seasonal modifications of the overall warming in the equatorial Pacific. Temperature changes also occur over land where they are sometimes even larger than over the ocean. In the equatorial Pacific, the strength of interannual SST variability is reduced by about 10%–15% and phase locking to the annual cycle is improved. The ENSO spectral peak is broader than in the experiment without biology and the dominant ENSO period is increased to around 5 yr. Also the skewness of ENSO variability is slightly improved. All of these changes lead to the conclusion that the influence of marine biology on the radiative budget of the upper ocean should be considered in detailed simulations of the earth’s climate.


Sign in / Sign up

Export Citation Format

Share Document