scholarly journals Inherited structure and coupled crust‐mantle lithosphere evolution: Numerical models of Central Australia

2016 ◽  
Vol 43 (10) ◽  
pp. 4962-4970 ◽  
Author(s):  
Philip J. Heron ◽  
Russell N. Pysklywec
2021 ◽  
Vol 9 ◽  
Author(s):  
Lin Chen

The continental lower crust is an important composition- and strength-jump layer in the lithosphere. Laboratory studies show its strength varies greatly due to a wide variety of composition. How the lower crust rheology influences the collisional orogeny remains poorly understood. Here I investigate the role of the lower crust rheology in the evolution of an orogen subject to horizontal shortening using 2D numerical models. A range of lower crustal flow laws from laboratory studies are tested to examine their effects on the styles of the accommodation of convergence. Three distinct styles are observed: 1) downwelling and subsequent delamination of orogen lithosphere mantle as a coherent slab; 2) localized thickening of orogen lithosphere; and 3) underthrusting of peripheral strong lithospheres below the orogen. Delamination occurs only if the orogen lower crust rheology is represented by the weak end-member of flow laws. The delamination is followed by partial melting of the lower crust and punctuated surface uplift confined to the orogen central region. For a moderately or extremely strong orogen lower crust, topography highs only develop on both sides of the orogen. In the Tibetan plateau, the crust has been doubly thickened but the underlying mantle lithosphere is highly heterogeneous. I suggest that the subvertical high-velocity mantle structures, as observed in southern and western Tibet, may exemplify localized delamination of the mantle lithosphere due to rheological weakening of the Tibetan lower crust.


2020 ◽  
Author(s):  
Ryan Stoner ◽  
Mark Behn ◽  
Bradley Hacker

<p>Geochronological and thermobarometric data from a lower crustal xenolith suite in the Pamir offer a unique record of the transport of lower crust to mantle depths after an episode of slab breakoff. We compare petrologically constrained pressure-temperature-time paths from the xenoliths to pressure-temperature-time (P-T-t) paths of tracked markers in 2-D numerical geodynamic models of density foundering with thermodynamically calculated densities. We investigate whether gravitational “drip” instabilities or the peeling back of a dense layer—delamination—can reproduce the P-T-t paths seen in the xenoliths, with the ancillary goal of capturing the positive feedback between mechanical thickening and densification of the lower crust. Key thermobarometric observations from the xenoliths we try to match in our numerical study are: (1) initial heating at near-constant pressure followed by (2) a sharp increase in pressure with continued heating. We find that thick crustal sections develop P-T-t paths in numerical models of delamination that match the observations from xenoliths: the lower crust initially heats due to return flow from upwelling asthenosphere, and then foundering mantle lithosphere and crust show a marked increase in pressure with additional heating. Initial gravitational drip instabilities founder with relatively little heating yet may thin the mantle lithosphere sufficiently to allow for subsequent delamination or asymmetric drips to nucleate in the region of hotter, thinner mantle lithosphere. Such subsequent asymmetric drips or delamination entrain crust that closely follows the P-T-t path from xenoliths. This suggests that the xenoliths were not derived from an initial drip instability, but instead from later instabilities or delamination enabled by thinning of the lithosphere. In all models where density foundering occurs, the positive feedback between contraction and densification of the lower crust leads to the loss of initially positively buoyant lower crust. The combination of geological and numerical methods constrains the geometry and triggers of lower crustal foundering during collision. Contraction alone does not match the record of foundering; the lithosphere must have also been asymmetrically thinned.</p><p> </p>


2021 ◽  
Author(s):  
Wenbo Zhang ◽  
Stephen T. Johnston ◽  
Claire A. Currie

ABSTRACT The North American Cordillera is generally interpreted as a result of the long-lived, east-dipping subduction at the western margin of the North American plate. However, the east-dipping subduction seems problematic for explaining some of the geological features in the Cordillera such as large volume back-arc magmatism. Recent studies suggested that westward subduction of a now-consumed oceanic plate during the Cretaceous could explain these debated geological features. The evidence includes petrological and geochemical variations in magmatism, the presence of ophiolite that indicates tectonic sutures between the Cordillera and Craton, and seismic tomography images showing high-velocity bodies within the underlying convecting mantle that are interpreted as slab remnants from the westward subduction. Here we use 2-D upper mantle-scale numerical models to investigate the dynamics associated with westward subduction and Cordillera-Craton collision. The models demonstrate the controls on slab breakoff (remnant) following collision including: (1) oceanic and continental mantle lithosphere strength, (2) variations in density (eclogitization of continental lower crust and cratonic mantle lithosphere density), and (3) convergence rate. Our preferred model has a relatively weak mantle lithosphere, eclogitization of the lower continental crust, cratonic mantle lithosphere density of 3250 kg/m3, and a convergence rate of 5 cm/yr. It shows that collision and slab breakoff result in an ∼2 km increase in surface elevation of the Cordilleran region west of the suture as the dense oceanic plate detaches. The surface also shows a foreland geometry that extends >1000 km east of the suture with ∼4 km of subsidence relative to the adjacent Cordillera.


2020 ◽  
Vol 82 ◽  
pp. 149-160
Author(s):  
N Kargapolova

Numerical models of the heat index time series and spatio-temporal fields can be used for a variety of purposes, from the study of the dynamics of heat waves to projections of the influence of future climate on humans. To conduct these studies one must have efficient numerical models that successfully reproduce key features of the real weather processes. In this study, 2 numerical stochastic models of the spatio-temporal non-Gaussian field of the average daily heat index (ADHI) are considered. The field is simulated on an irregular grid determined by the location of weather stations. The first model is based on the method of the inverse distribution function. The second model is constructed using the normalization method. Real data collected at weather stations located in southern Russia are used to both determine the input parameters and to verify the proposed models. It is shown that the first model reproduces the properties of the real field of the ADHI more precisely compared to the second one, but the numerical implementation of the first model is significantly more time consuming. In the future, it is intended to transform the models presented to a numerical model of the conditional spatio-temporal field of the ADHI defined on a dense spatio-temporal grid and to use the model constructed for the stochastic forecasting of the heat index.


Sign in / Sign up

Export Citation Format

Share Document