Lower crustal recycling: Reconciling Petrological and Numerical Constraints from the Pamir

Author(s):  
Ryan Stoner ◽  
Mark Behn ◽  
Bradley Hacker

<p>Geochronological and thermobarometric data from a lower crustal xenolith suite in the Pamir offer a unique record of the transport of lower crust to mantle depths after an episode of slab breakoff. We compare petrologically constrained pressure-temperature-time paths from the xenoliths to pressure-temperature-time (P-T-t) paths of tracked markers in 2-D numerical geodynamic models of density foundering with thermodynamically calculated densities. We investigate whether gravitational “drip” instabilities or the peeling back of a dense layer—delamination—can reproduce the P-T-t paths seen in the xenoliths, with the ancillary goal of capturing the positive feedback between mechanical thickening and densification of the lower crust. Key thermobarometric observations from the xenoliths we try to match in our numerical study are: (1) initial heating at near-constant pressure followed by (2) a sharp increase in pressure with continued heating. We find that thick crustal sections develop P-T-t paths in numerical models of delamination that match the observations from xenoliths: the lower crust initially heats due to return flow from upwelling asthenosphere, and then foundering mantle lithosphere and crust show a marked increase in pressure with additional heating. Initial gravitational drip instabilities founder with relatively little heating yet may thin the mantle lithosphere sufficiently to allow for subsequent delamination or asymmetric drips to nucleate in the region of hotter, thinner mantle lithosphere. Such subsequent asymmetric drips or delamination entrain crust that closely follows the P-T-t path from xenoliths. This suggests that the xenoliths were not derived from an initial drip instability, but instead from later instabilities or delamination enabled by thinning of the lithosphere. In all models where density foundering occurs, the positive feedback between contraction and densification of the lower crust leads to the loss of initially positively buoyant lower crust. The combination of geological and numerical methods constrains the geometry and triggers of lower crustal foundering during collision. Contraction alone does not match the record of foundering; the lithosphere must have also been asymmetrically thinned.</p><p> </p>

2021 ◽  
Vol 9 ◽  
Author(s):  
Lin Chen

The continental lower crust is an important composition- and strength-jump layer in the lithosphere. Laboratory studies show its strength varies greatly due to a wide variety of composition. How the lower crust rheology influences the collisional orogeny remains poorly understood. Here I investigate the role of the lower crust rheology in the evolution of an orogen subject to horizontal shortening using 2D numerical models. A range of lower crustal flow laws from laboratory studies are tested to examine their effects on the styles of the accommodation of convergence. Three distinct styles are observed: 1) downwelling and subsequent delamination of orogen lithosphere mantle as a coherent slab; 2) localized thickening of orogen lithosphere; and 3) underthrusting of peripheral strong lithospheres below the orogen. Delamination occurs only if the orogen lower crust rheology is represented by the weak end-member of flow laws. The delamination is followed by partial melting of the lower crust and punctuated surface uplift confined to the orogen central region. For a moderately or extremely strong orogen lower crust, topography highs only develop on both sides of the orogen. In the Tibetan plateau, the crust has been doubly thickened but the underlying mantle lithosphere is highly heterogeneous. I suggest that the subvertical high-velocity mantle structures, as observed in southern and western Tibet, may exemplify localized delamination of the mantle lithosphere due to rheological weakening of the Tibetan lower crust.


2021 ◽  
Author(s):  
Wenbo Zhang ◽  
Stephen T. Johnston ◽  
Claire A. Currie

ABSTRACT The North American Cordillera is generally interpreted as a result of the long-lived, east-dipping subduction at the western margin of the North American plate. However, the east-dipping subduction seems problematic for explaining some of the geological features in the Cordillera such as large volume back-arc magmatism. Recent studies suggested that westward subduction of a now-consumed oceanic plate during the Cretaceous could explain these debated geological features. The evidence includes petrological and geochemical variations in magmatism, the presence of ophiolite that indicates tectonic sutures between the Cordillera and Craton, and seismic tomography images showing high-velocity bodies within the underlying convecting mantle that are interpreted as slab remnants from the westward subduction. Here we use 2-D upper mantle-scale numerical models to investigate the dynamics associated with westward subduction and Cordillera-Craton collision. The models demonstrate the controls on slab breakoff (remnant) following collision including: (1) oceanic and continental mantle lithosphere strength, (2) variations in density (eclogitization of continental lower crust and cratonic mantle lithosphere density), and (3) convergence rate. Our preferred model has a relatively weak mantle lithosphere, eclogitization of the lower continental crust, cratonic mantle lithosphere density of 3250 kg/m3, and a convergence rate of 5 cm/yr. It shows that collision and slab breakoff result in an ∼2 km increase in surface elevation of the Cordilleran region west of the suture as the dense oceanic plate detaches. The surface also shows a foreland geometry that extends >1000 km east of the suture with ∼4 km of subsidence relative to the adjacent Cordillera.


2021 ◽  
Vol 8 (5) ◽  
pp. 70
Author(s):  
Marco Ferroni ◽  
Beatrice Belgio ◽  
Giuseppe M. Peretti ◽  
Alessia Di Giancamillo ◽  
Federica Boschetti

The menisci of the knee are complex fibro-cartilaginous tissues that play important roles in load bearing, shock absorption, joint lubrication, and stabilization. The objective of this study was to evaluate the interaction between the different meniscal tissue components (i.e., the solid matrix constituents and the fluid phase) and the mechanical response according to the developmental stage of the tissue. Menisci derived from partially and fully developed pigs were analyzed. We carried out biochemical analyses to quantify glycosaminoglycan (GAG) and DNA content according to the developmental stage. These values were related to tissue mechanical properties that were measured in vitro by performing compression and tension tests on meniscal specimens. Both compression and tension protocols consisted of multi-ramp stress–relaxation tests comprised of increasing strains followed by stress–relaxation to equilibrium. To better understand the mechanical response to different directions of mechanical stimulus and to relate it to the tissue structural composition and development, we performed numerical simulations that implemented different constitutive models (poro-elasticity, viscoelasticity, transversal isotropy, or combinations of the above) using the commercial software COMSOL Multiphysics. The numerical models also allowed us to determine several mechanical parameters that cannot be directly measured by experimental tests. The results of our investigation showed that the meniscus is a non-linear, anisotropic, non-homogeneous material: mechanical parameters increase with strain, depend on the direction of load, and vary among regions (anterior, central, and posterior). Preliminary numerical results showed the predominant role of the different tissue components depending on the mechanical stimulus. The outcomes of biochemical analyses related to mechanical properties confirmed the findings of the numerical models, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. During maturation, the increase in compressive moduli could be explained by cell differentiation from fibroblasts to metabolically active chondrocytes, as indicated by the found increase in GAG/DNA ratio. The changes of tensile mechanical response during development could be related to collagen II accumulation during growth. This study provides new information on the changes of tissue structural components during maturation and the relationship between tissue composition and mechanical response.


2011 ◽  
Vol 48 (2) ◽  
pp. 187-204 ◽  
Author(s):  
Gary P. Beakhouse ◽  
Shoufa Lin ◽  
Sandra L. Kamo

The Neoarchean Pukaskwa batholith consists of pre-, syn-, and post-tectonic phases emplaced over an interval of 50 million years. Pre-tectonic phases are broadly synvolcanic and have a high-Al tonalite–trondhjemite–granodiorite (TTG) affinity interpreted to reflect derivation by partial melting of basaltic crust at lower crustal or upper mantle depths. Minor syn-tectonic phases slightly post-date volcanism and have geochemical characteristics suggesting some involvement or interaction with an ultramafic (mantle) source component. Magmatic emplacement of pre- and syn-tectonic phases occurred in the midcrust at paleopressures of 550–600 MPa and these components of the batholith are thought to be representative of the midcrust underlying greenstone belts during their development. Subsequent to emplacement of the syntectonic phases, and likely at approximately 2680 Ma, the Pukaskwa batholith was uplifted as a structural dome relative to flanking greenstone belts synchronously with ongoing regional sinistral transpressive deformation. The driving force for vertical tectonism is interpreted to be density inversion (Rayleigh–Taylor-type instabilities) involving denser greenstone belts and underlying felsic plutonic crust. The trigger for initiation of this process is interpreted to be an abrupt change in the rheology of the midcrust attributed to introduction of heat from the mantle attendant with slab breakoff or lithospheric delamination following the cessation of subduction. This process also led to partial melting of the intermediate to felsic midcrust generating post-tectonic granitic phases at approximately 2667 Ma. We propose that late density inversion-driven vertical tectonics is an inevitable consequence of horizontal (plate) tectonic processes associated with greenstone belt development within the Superior Province.


1986 ◽  
Vol 123 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Robert W. H. Butler

AbstractA model is proposed whereby the Caledonian metamorphic basement-cover complex of northwest Scotland (the Moine) is considered as a linked thrust system. This system lies between the Moine thrust at its base and the Naver–Sgurr Beag slide at its top. Ductile fold and thrust zones, which developed at mid crustal levels at metamorphic grades from greenschist to amphibolite facies, are interpreted as decoupling from a detachment presently situated at relatively shallow depths. This model is illustrated by two preliminary balanced cross-sections. These imply shortening across the northwest Scottish Caledonides in excess of 130 km and probably over 200 km. When these structures are restored onto a crustal template a considerable quantity of lower crust is found to be required at depth. The most likely location for the lower crustal wedge is beneath the Grampian Highlands.


2014 ◽  
Vol 626 ◽  
pp. 109-114
Author(s):  
Wen Su Chen ◽  
Hong Hao ◽  
Hao Du

Hurricane, typhoon and cyclone take place more and more often around the world with changing climate. Such nature disasters cause tremendous economic loss and casualty. Various kinds of windborne debris such as compact-like, plate-like and rod-like objects driven by hurricane usually imposes localized impact loading on the structure envelopes such as cladding, wall or roof, etc. The dominant opening in the envelope might cause serious damage to the structures, even collapse. To withstand the impact of such extreme event, the requirements on panel capacity to resist windborne debris impact has been presented in the Australian Wind Loading Code (2011) [1]. Corrugated metal panels are widely used as building envelop. In a previous study, laboratory tests have been carried out to investigate the performance of corrugated metal panels subjected to a 4kg wooden projectile by considering various impact locations, impact velocities and boundary conditions. In this study, numerical models were developed to simulate the responses of the corrugated metal panels subjected to wooden debris impacts by using commercial software LS-DYNA. The predicted data from the numerical simulations were compared with the experimental results. The validated numerical model can be used to conduct intensive numerical simulation to study the failure probabilities of corrugated structural panels subjected to windborne debris impacts.


Author(s):  
Michael CH Yam ◽  
Ke Ke ◽  
Ping Zhang ◽  
Qingyang Zhao

A novel beam-to-column connection equipped with shape memory alloy (SMA) plates has been proposed to realize resilient performance under low-to-medium seismic actions. In this conference paper, the detailed 3D numerical technique calibrated by the previous paper is adopted to examine the hysteretic behavior of the novel connection. A parametric study covering a reasonable range of parameters including the thickness of the SMA plate, friction coefficient between SMA plate and beam flange and pre-load of the bolt was carried out and the influence of the parameters was characterized. In addition, the effect of the SMA Belleville washer on the connection performance was also studied. The results of the numerical study showed that the initial connection stiffness and the energy-dissipation capacity of the novel connection can be enhanced with the increase of the thickness of the SMA plate. In addition, the initial connection stiffness and energy-dissipation behavior of the novel connection can be improved by increasing the friction coefficient or pre-load of bolts, whereas the increased friction level could compromise the self-centering behavior of the connection. The hysteretic curves of the numerical models of the connection also implied that the SMA washers may contribute to optimizing the connection behavior by increasing the connection stiffness and energy-dissipation capacity without sacrificing the self-centering behavior.


Author(s):  
Brian O’Driscoll ◽  
Julien Leuthold ◽  
Davide Lenaz ◽  
Henrik Skogby ◽  
James M D Day ◽  
...  

Abstract Samples of peridotites and pyroxenites from the mantle and lower crustal sections of the Leka Ophiolite Complex (LOC; Norway) are examined to investigate the effects of melt-rock reaction and oxygen fugacity variations in the sub-arc oceanic lithosphere. The LOC is considered to represent supra-subduction zone (SSZ) oceanic lithosphere, but also preserves evidence of pre-SSZ magmatic processes. Here we combine field and microstructural observations with mineral chemical and structural analyses of different minerals from the major lithologies of the LOC. Wehrlite and websterite bodies in both the mantle and lower crust contain clinopyroxene likely formed at a pre-SSZ stage, characterised by high Al, high Cr, low Mg crystal cores. These clinopyroxenes also exhibit low Al, low Cr, high Mg outer rims and intracrystalline dissolution surfaces, indicative of reactive melt percolation during intrusion and disruption of these lithologies by later, SSZ-related, dunite-forming magmas. Chromian-spinel compositional variations correlate with lithology; dunite-chromitite Cr-spinels are characterised by relatively uniform and high TiO2 and Al2O3, indicating formation by melt-rock reaction associated with SSZ processes. Harzburgite Cr-spinel compositions are more variable but preserve a relatively high Al2O3, low TiO2 endmember that may reflect crystallisation in a pre-SSZ oceanic spreading centre setting. An important finding of this study is that the LOC potentially preserves the petrological signature of a transition between oceanic spreading centre processes and subsequent supra-subduction zone magmatism. Single crystal Cr-spinel Fe3+/ΣFe ratios calculated on the basis of stoichiometry (from electron microprobe [EPMA] and crystal structural [X-ray diffraction; XRD] measurements) correlate variably with those calculated by point-source (single crystal) Mössbauer spectroscopy. Average sample EPMA Fe3+/ΣFe ratios overestimate or underestimate the Mössbauer-derived values for harzburgites, and always overestimate the Mössbauer Fe3+/ΣFe ratios for dunites and chromitites. The highest Fe3+/ΣFe ratios, irrespective of method of measurement, are therefore generally associated with dunites and chromitites, and yield calculated log(fO2)FMQ values of up to ~+1.8. While this lends support to the formation of the dunites and chromitites during SSZ-related melt percolation in the lower part of the LOC, it also suggests that these melts were not highly oxidised, compared to typical arc basalts (fO2FMQ of >+2). This may in turn reflect the early (forearc) stage of subduction zone activity preserved by the LOC and implies that some of the arc tholeiitic and boninitic lava compositions preserved in the upper portion of the ophiolite are not genetically related to the mantle and lower crustal rocks, against which they exhibit tectonic contacts. Our new data also have implications for the use of ophiolite chromitites as recorders of mantle oxidation state through time; a global comparison suggests that the Fe3+/ΣFe signatures of ophiolite chromitites are likely to have more to do with local environmental petrogenetic conditions in sub-arc systems than large length-scale mantle chemical evolution.


2021 ◽  
Vol 930 ◽  
Author(s):  
I.A. Milne ◽  
O. Kimmoun ◽  
J.M.R. Graham ◽  
B. Molin

The wave-induced resonant flow in a narrow gap between a stationary hull and a vertical wall is studied experimentally and numerically. Vortex shedding from the sharp bilge edge of the hull gives rise to a quadratically damped free surface response in the gap, where the damping coefficient is approximately independent of wave steepness and frequency. Particle image velocimetry and direct numerical simulations were used to characterise the shedding dynamics and explore the influence of discretisation in the measurements and computations. Secondary separation was identified as a particular feature which occurred at the hull bilge in these gap flows. This can result in the generation of a system with multiple vortical regions and asymmetries between the inflow and outflow. The shedding dynamics was found to exhibit a high degree of invariance to the amplitude in the gap and the spanwise position of the barge. The new measurements and the evaluation of numerical models of varying fidelity can assist in informing offshore operations such as the side by side offloading from floating liquefied natural gas facilities.


Sign in / Sign up

Export Citation Format

Share Document