scholarly journals Experiments versus theory for the initiation and propagation of radial hydraulic fractures in low-permeability materials

2017 ◽  
Vol 122 (2) ◽  
pp. 1239-1263 ◽  
Author(s):  
B. Lecampion ◽  
J. Desroches ◽  
R. G. Jeffrey ◽  
A. P. Bunger
2021 ◽  
Author(s):  
Vil Syrtlanov ◽  
Yury Golovatskiy ◽  
Konstantin Chistikov ◽  
Dmitriy Bormashov

Abstract This work presents the approaches used for the optimal placement and determination of parameters of hydraulic fractures in horizontal and multilateral wells in a low-permeability reservoir using various methods, including 3D modeling. The results of the production rate of a multilateral dualwellbore well are analyzed after the actual hydraulic fracturing performed on the basis of calculations. The advantages and disadvantages of modeling methods are evaluated, recommendations are given to improve the reliability of calculations for models with hydraulic fracturing (HF)/ multistage hydraulic fracturing (MHF).


SPE Journal ◽  
2019 ◽  
Vol 24 (04) ◽  
pp. 1839-1855 ◽  
Author(s):  
Bing Hou ◽  
Zhi Chang ◽  
Weineng Fu ◽  
Yeerfulati Muhadasi ◽  
Mian Chen

Summary Deep shale gas reservoirs are characterized by high in-situ stresses, a high horizontal-stress difference (12 MPa), development of bedding seams and natural fractures, and stronger plasticity than shallow shale. All of these factors hinder the extension of hydraulic fractures and the formation of complex fracture networks. Conventional hydraulic-fracturing techniques (that use a single fluid, such as guar fluid or slickwater) do not account for the initiation and propagation of primary fractures and the formation of secondary fractures induced by the primary fractures. For this reason, we proposed an alternating-fluid-injection hydraulic-fracturing treatment. True triaxial hydraulic-fracturing tests were conducted on shale outcrop specimens excavated from the Shallow Silurian Longmaxi Formation to study the initiation and propagation of hydraulic fractures while the specimens were subjected to an alternating fluid injection with guar fluid and slickwater. The initiation and propagation of fractures in the specimens were monitored using an acoustic-emission (AE) system connected to a visual display. The results revealed that the guar fluid and slickwater each played a different role in hydraulic fracturing. At a high in-situ stress difference, the guar fluid tended to open the transverse fractures, whereas the slickwater tended to activate the bedding planes as a result of the temporary blocking effect of the guar fluid. On the basis of the development of fractures around the initiation point, the initiation patterns were classified into three categories: (1) transverse-fracture initiation, (2) bedding-seam initiation, and (3) natural-fracture initiation. Each of these fracture-initiation patterns had a different propagation mode. The alternating-fluid-injection treatment exploited the advantages of the two fracturing fluids to form a large complex fracture network in deep shale gas reservoirs; therefore, we concluded that this method is an efficient way to enhance the stimulated reservoir volume compared with conventional hydraulic-fracturing technologies.


SPE Journal ◽  
2013 ◽  
Vol 19 (03) ◽  
pp. 443-462 ◽  
Author(s):  
Sahar Ghannadi ◽  
Mazda Irani ◽  
Rick Chalaturnyk

Summary Inductive methods, such as electromagnetic steam-assisted gravity drainage (EM-SAGD), have been identified as technically and economically feasible recovery methods for shallow oil-sands reservoirs with overburdens of more than 30 m (Koolman et al. 2008). However, in EM-SAGD projects, the caprock overlying oil-sands reservoirs is also electromagnetically heated along with the bitumen reservoir. Because permeability is low in Alberta thermal-project caprock formations (i.e., the Clearwater shale formation in the Athabasca deposit and the Colorado shale formation in the Cold Lake deposit), the pore pressure resulting from the thermal expansion of pore fluids may not be balanced with the fluid loss caused by flow and the fluid-volume changes resulting from pore dilation. In extreme cases, the water boils, and the pore pressure increases dramatically as a result of the phase change in the water, which causes profound effective-stress reduction. After this condition is established, pore pressure increases can lead to shear failure of the caprock, the creation of microcracks and hydraulic fractures, and subsequent caprock integrity failure. It is typically believed that low-permeability caprocks impede the transmission of pore pressure from the reservoir, making them more resistant to shear failure (Collins 2005, 2007). In cases of induced thermal pressurization, low-permeability caprocks are not always more resistant. In this study, analytical solutions are obtained for temperature and pore-pressure rises caused by the constant EM heating rate of the caprock. These analytical solutions show that pore-pressure increases from EM heating depend on the permeability and compressibility of the caprock formation. For stiff or low-compressibility media, thermal pressurization can cause fluid pressures to approach hydrostatic pressure, and shear strength to approach zero for low-cohesive-strength units of the caprock (units of the caprock with high silt and sand percentage) and sections of the caprock with pre-existing fractures with no cohesion.


2001 ◽  
Vol 38 (2) ◽  
pp. 316-327 ◽  
Author(s):  
Ron CK Wong ◽  
Marolo C Alfaro

This paper presents a field study on hydraulic fracturing for in situ remediation of contaminated ground. Sand-propped hydraulic fractures were placed from vertical and horizontal wells at a test facility. Field excavations were conducted to expose the fractures and inspect their distribution and geometry. Fractures that were mapped by field excavation were found to be near horizontal, implying that the soil formation is overconsolidated. It was also observed that the sand "proppant" was thicker at locations where the soil layers were relatively weak or contained weak fissures. Electrical resistivity tomography (ERT) was also conducted in an attempt to map the fractures. There was no indication that fractures were being mapped by this geophysical technique. Fracture mapping based on tiltmeter data analyses conformed closely with the actual fracture placement in the vertical well but did not properly predict the actual fracture placement in the horizontal well.Key words: hydraulic fracturing, field test, low-permeability soil, electrical resistivity tomography, tiltmeters, horizontal well, vertical well.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qingying Cheng ◽  
Bingxiang Huang ◽  
Xinglong Zhao

Rock directional fracturing is one of the difficult problems in deep mines. Directional fracturing controlled by hydraulic fracturing in dense linear multiboreholes is a novel directional fracturing technology of rock mass, which has been applied to the ground control in mines. In this paper, a physical model experiment was performed to study the fracture propagation process between multiboreholes. The results show that the intersecting of fractures between boreholes caused the sharp fluctuation of injecting water pressure. A directional fracturing plane was formed along with the direction of boreholes layout, and the surface of the fracturing plane is relatively flat. The dynamic initiation and propagation process of cracks between boreholes during directional hydraulic fracturing were simulated. The evolution of poroelastic stress and pore pressure between multiboreholes was analyzed. The numerical results indicated that a poroelastic stress concentration zone and pore pressure increase zone appeared between boreholes in the direction of boreholes layout. The pore pressure distribution is generally an elliptical seepage water pressure zone with the long axis along the direction of the boreholes layout. After the hydraulic fractures are initiated along the direction of the boreholes layout, the poroelastic stress on both sides of fractures decreases.


Sign in / Sign up

Export Citation Format

Share Document