scholarly journals Nitrous oxide production in surface waters of the mid-latitude North Atlantic Ocean

2017 ◽  
Vol 122 (3) ◽  
pp. 2612-2621 ◽  
Author(s):  
Qixing Ji ◽  
Bess B. Ward
1900 ◽  
Vol 66 (424-433) ◽  
pp. 484-485

In this paper an attempt is made to investigate the normal circulation of the surface waters of the Atlantic Ocean north of 40° N. lat., and its changes, by means of a series of synoptic charts showing the distribution of temperature and salinity over the area for each month of the two years 1896 and 1897.


The history of our knowledge of the currents of the North Atlantic Ocean up to the year 1870 has been written once for all by Petermann (I), who in that year published a memoir maintaining, contrary to the opinion of Findlay, Blunt, and Carpenter, that eastern and northern extensions of the Gulf Stream were the prime factors in the circulation. Petermann subjected practically the whole of the material in the way of observations then extant to an exhaustive critical examination, and came to conclusions which are worth quoting, in the summary, inasmuch as the observations of the twenty succeeding years did not seriously modify them :— 1. The hot source and core of the Gulf Stream extends from the Strait of Florida, along the North American coast at all times.... up to the 37th degree of northern latitude.


2006 ◽  
Vol 3 (4) ◽  
pp. 607-619 ◽  
Author(s):  
S. Walter ◽  
H. W. Bange ◽  
U. Breitenbach ◽  
D. W. R. Wallace

Abstract. In order to get a comprehensive picture of the distribution of nitrous oxide (N2O) in the North Atlantic Ocean, measurements of dissolved nitrous oxide were made during three cruises in the tropical, subtropical and cold-temperate North Atlantic Ocean in October/November 2002, March/April 2004, and May 2002, respectively. To account for the history of atmospheric N2O, we suggest a new depth-dependent calculation of excess N2O (ΔN2O). N2O depth profiles showed supersaturation throughout the water column with a distinct increasing trend from the cold-temperate to the tropical region. Lowest nitrous oxide concentrations, near equilibrium and with an average of 11.0±1.7 nmol L−1, were found in the cold-temperate North Atlantic where the profiles showed no clear maxima. Highest values up to 37.3 nmol L−1 occurred in the tropical North Atlantic with clear maxima at approximately 400 m. A positive correlation of nitrous oxide with nitrate, as well as excess nitrous oxide with the apparent oxygen utilization (AOU), was only observed in the subtropical and tropical regions. Therefore, we conclude that the formation of nitrous oxide via nitrification occurs in the tropical region rather than in the cold-temperate region of the North Atlantic Ocean


2012 ◽  
Vol 9 (5) ◽  
pp. 1725-1739 ◽  
Author(s):  
D. Aldridge ◽  
C. J. Beer ◽  
D. A. Purdie

Abstract. Marine calcifiers, such as planktonic foraminifera, form a major component of the global carbon cycle, acting as both a source and sink of CO2. Understanding factors that affect calcification in these organisms is therefore critical in predicting how the oceans will respond to increased CO2 concentrations in the atmosphere. Here, size-normalised weights (SNWs) of the planktonic foraminifera Globigerina bulloides, collected from the surface waters of the North Atlantic Ocean, are compared with in situ carbonate ion concentrations ([CO32–]), sea-surface temperature, optimum growth conditions and nutrient concentrations. Changes in phosphate concentrations ([PO43–], range: 0.04–0.39 μM) explained the majority of G. bulloides SNW variation, with reduced test masses at higher concentrations. Two factors already known to influence calcification in foraminifers, [CO32–] and temperature, were also positively correlated over the range of values examined (148–181 μM kg−1 and 10.3–12.7 °C respectively). No evidence was found for increased SNWs under apparent optimum growth conditions, indicated by G. bulloides abundances. However, "growth potentials" (μ), derived from modelled growth rates (d–1), were positively correlated with SNWs, suggesting that this may be a better proxy for optimum growth conditions. These findings point to the potential importance of [PO43–] in determining calcification intensities in foraminifera, a factor which has been overlooked by previous studies on these organisms. The confirmation of this via carefully controlled culture studies is recommended in the future.


Sign in / Sign up

Export Citation Format

Share Document