scholarly journals Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change

2016 ◽  
Vol 121 (14) ◽  
pp. 8297-8310 ◽  
Author(s):  
G. Nicolet ◽  
N. Eckert ◽  
S. Morin ◽  
J. Blanchet
2018 ◽  
Vol 54 (10) ◽  
pp. 7820-7840 ◽  
Author(s):  
Gilles Nicolet ◽  
Nicolas Eckert ◽  
Samuel Morin ◽  
Juliette Blanchet

2020 ◽  
Author(s):  
Thibaut Capblancq ◽  
Xavier Morin ◽  
Maya Gueguen ◽  
Julien Renaud ◽  
Stéphane Lobreaux ◽  
...  

2019 ◽  
Vol 13 (4) ◽  
pp. 1325-1347 ◽  
Author(s):  
Pierre Spandre ◽  
Hugues François ◽  
Deborah Verfaillie ◽  
Marc Pons ◽  
Matthieu Vernay ◽  
...  

Abstract. Climate change is increasingly regarded as a threat for winter tourism due to the combined effect of decreasing natural snow amounts and decreasing suitable periods for snowmaking. The present work investigated the snow reliability of 175 ski resorts in France (Alps and Pyrenees), Spain and Andorra under past and future conditions using state-of-the-art snowpack modelling and climate projections using Representative Concentration Pathways RCP2.6, RCP4.5 and RCP8.5. The natural snow reliability (i.e. without snowmaking) elevation showed a significant spatial variability in the reference period (1986–2005) and was shown to be highly impacted by the ongoing climate change. The reliability elevation using snowmaking is projected to rise by 200 to 300 m in the Alps and by 400 to 600 m in the Pyrenees in the near future (2030–2050) compared to the reference period for all climate scenarios. While 99 % of ski lift infrastructures exhibit adequate snow reliability in the reference period when using snowmaking, a significant fraction (14 % to 25 %) may be considered in a critical situation in the near future. Beyond the mid-century, climate projections highly depend on the scenario with either steady conditions compared to the near future (RCP2.6) or continuous decrease in snow reliability (RCP8.5). Under RCP8.5, our projections show that there would no longer be any snow-reliable ski resorts based on natural snow conditions in the French Alps and Pyrenees (France, Spain and Andorra) at the end of the century (2080–2100). For this time period and this scenario, only 24 resorts are projected to remain reliable with snowmaking, all being located in the Alps.


2020 ◽  
Author(s):  
Erwan Le Roux ◽  
Guillaume Evin ◽  
Nicolas Eckert ◽  
Juliette Blanchet ◽  
Samuel Morin

<p>In a context of climate change, assessing trends in hazards related to extreme events is urgent. Specifically current methods to compute European standards for snow load actions on structures do not account for the non-stationarity due to climate change. We present the first analysis of extreme ground snow load trends for the whole French Alps. Our method is based on non-stationary generalized extreme value (GEV) distribution, time derivative of return level and likelihood ratio test. Thanks to Météo France reanalysis and snowpack models, we study moutain massif scale data available every 300m of altitude from 1958 to 2017. We detect an overall decreasing trend for annual maxima of ground snow load between 900m and 2700m, which is significant in the Northwest of the French Alps until 1800m. Despite decreasing return levels, in 2017 half of massifs at altitude 1800m still exceeds standard return levels. We underline the importance of snowpack modelling and limitations of approaches relying on ground snow load computed with snow depth annual maxima and an hypothesis on snow density.</p>


2005 ◽  
Vol 51 (175) ◽  
pp. 561-572 ◽  
Author(s):  
M. Gerbaux ◽  
C. Genthon ◽  
P. Etchevers ◽  
C. Vincent ◽  
J.P. Dedieu

AbstractA new physically based distributed surface mass-balance model is presented for Alpine glaciers. Based on the Crocus prognostic snow model, it resolves both the temporal (1 hour time-step) and spatial (200 m grid-step) variability of the energy and mass balance of glaciers. Mass-balance reconstructions for the period 1981–2004 are produced using meteorological reconstruction from the SAFRAN meteorological model for Glacier de Saint-Sorlin and Glacier d’Argentière, French Alps. Both glaciers lost mass at an accelerated rate in the last 23 years. The spatial distribution of precipitation within the model grid is adjusted using field mass-balance measurements. This is the only correction made to the SAFRAN meteorological input to the glacier model, which also includes surface atmospheric temperature, moisture, wind and all components of downward radiation. Independent data from satellite imagery and geodetic measurements are used for model validation. With this model, glacier sensitivity to climate change can be separately evaluated with respect to a full range of meteorological parameters, whereas simpler models, such as degree-day models, only account for temperature and precipitation. We provide results for both mass balance and equilibrium-line altitude (ELA) using a generic Alpine glacier. The sensitivity of the ELA to air temperature alone is found to be 125 m °C–1, or 160 m °C¯1 if concurrent (Stefan–Boltzmann) longwave radiation change is taken into account.


Author(s):  
Claire Deléglise ◽  
Hermann Dodier ◽  
Laurent Garde ◽  
Hugues François ◽  
Isabelle Arpin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document