scholarly journals Surface Wave Tomography of the Alps Using Ambient-Noise and Earthquake Phase Velocity Measurements

2018 ◽  
Vol 123 (2) ◽  
pp. 1770-1792 ◽  
Author(s):  
Emanuel D. Kästle ◽  
A. El-Sharkawy ◽  
L. Boschi ◽  
T. Meier ◽  
C. Rosenberg ◽  
...  
2020 ◽  
Author(s):  
Petr Kolínský ◽  
Tena Belinić ◽  
Josip Stipčević ◽  
Irene Bianchi ◽  
Florian Fuchs ◽  
...  

<p>The Alpine-Dinarides are a complex orogenic system, with its tectonic evolution controlled by the ongoing convergence between Eurasian and African plates with the Adriatic microplate wedged between them. Our study focuses on the upper mantle of the wider Alpine-Dinarides region, and we present surface-wave tomography of two overlapping subregions, interpreting the seismic velocity features in the context of regional geodynamics.</p><p>In the first part, we use records of 151 teleseismic earthquakes (2010-2018) at 98 stations distributed across the wider Dinarides region. Surface-wave phase velocities are measured in the range of 30 – 160 s by the two-station method at pairs of stations aligned along the great circle paths with the epicenters. We apply several data-quality tests before the dispersion curves are measured. We use Rayleigh waves recorded on both radial and vertical components. Only the dispersions measured coherently at both components are used for the tomography. In total, we reach the number of 9000 phase velocity measurements for the period of 50 s. Tomographic results including resolution estimates are provided for various frequencies; the local dispersion curves are inverted for depths from the surface down to 300 km. Results are shown as maps for various depths and as cross-sections along several profiles of shear-wave velocities in the whole region.</p><p>The other study focuses on the Alps. The AlpArray seismic network stretches hundreds of kilometers in width and more than thousand kilometers in length. It is distributed over the greater Alpine region (Europe) and consists of around 250 temporary and around 400 permanent broadband stations with interstation distances around 40 km. The earthquakes are selected between years 2016-2019. The methodology differs from the Dinarides case in a sense, that while before we used many earthquakes and less stations pairs (due to sparser station coverage), for the Alps, we use less earthquakes (32) and many more stations pairs (tens of thousands) making use of the dense station coverage of the AlpArray network.</p><p>Results of the depth inversion of the local dispersion measurements for the Alps are compared with local surface-wave phase-velocity measurement obtained from the (sub)array approach.</p>


2020 ◽  
Author(s):  
Thomas Meier ◽  
Amr El-Sharkawy ◽  
Sergei Lebedev

<p>Collisional tectonics of the Alps is driven by several slab segments. A detailed imaging of the lithosphere-asthenosphere system beneath the Alps is, however, challenging due to the relatively small size of the slab segments and the highly curved geometry of the Alps. Surface waves, due to their high sensitivity to variations in seismic velocities at lower crustal and upper mantle depth, are well suited to study the Alpine deep structure. New azimuthally anisotropic Rayleigh wave phase velocity maps are calculated from automated inter-station phase velocity measurements in a very broad period range (8 – 350 s). The constructed local dispersion curves are then inverted individually for 1-D shear-wave velocity models using a new implementation of the stochastic Particle Swarm Optimization (PSO) inversion algorithm that enables the calculation of a high-resolution 3-D shear-wave velocity model from the crust down to 300 km beneath the Alps. In the Central Alps, a nearly vertical high velocity anomaly down to depth of 250 km is imaged and interpreted as subducting Eurasian mantle lithosphere. In contrast, low velocities in the Western Alps at depth of approximately 100 km and downwards are supporting the shallow slab break-off model. In the Eastern Alps, the presence of a vertically continuous high-velocity anomaly from 75 km to about 200 km depth beneath the northern Eurasian foreland and the almost continuous extension of a high-velocity anomaly from the Dinarides towards the Eastern Alps hint at a bivergent slab geometry beneath the Eastern Alps caused by subducting mantle lithosphere of both Eurasian and Adriatic origin. There is also evidence for subduction of Adriatic lithosphere to the east beneath the Pannonian Basin and the Dinarides down to a depth of about 150 km. Beneath the northern Apennines, the model indicates an attached Adriatic slab, whereas a slab window is found beneath the central Apennines. The results show that surface wave tomography can contribute to the imaging of complex slab geometries and slab segmentation in the Alpine region.</p>


2014 ◽  
Vol 50 (5) ◽  
pp. 632-640 ◽  
Author(s):  
T. B. Yanovskaya ◽  
E. L. Lyskova ◽  
T. Yu. Koroleva

2020 ◽  
Author(s):  
D. Hollis ◽  
S. Beaupretre ◽  
A. Kantsler ◽  
J. Ong ◽  
A. Mordret ◽  
...  

2020 ◽  
Vol 110 (3) ◽  
pp. 1359-1371
Author(s):  
Lun Li ◽  
Yuanyuan V. Fu

ABSTRACT An understanding of mantle dynamics occurring beneath the Tibetan plateau requires a detailed image of its seismic velocity and anisotropic structure. Surface waves at long periods (>50  s) could provide such critical information. Though Rayleigh-wave phase velocity maps have been constructed in the Tibetan regions using ambient-noise tomography (ANT) and regional earthquake surface-wave tomography, Love-wave phase velocity maps, especially those at longer periods (>50  s), are rare. In this study, two-plane-wave teleseismic surface-wave tomography is applied to develop 2D Rayleigh-wave and Love-wave phase velocity maps at periods between 20 and 143 s across eastern and central Tibet and its surroundings using four temporary broadband seismic experiments. These phase velocity maps share similar patterns and show high consistency with those previously obtained from ANT at overlapping periods (20–50 s), whereas our phase velocity maps carry useful information at longer periods (50–143 s). Prominent slow velocity is imaged at periods of 20–143 s beneath the interior of the Tibetan plateau (i.e., the Songpan–Ganzi terrane, the Qiangtang terrane, and the Lhasa terrane), implying the existence of thick Tibetan crust along with warm and weak Tibetan lithosphere. In contrast, the dispersal of fast velocity anomalies coincides with mechanically strong, cold tectonic blocks, such as the Sichuan basin and the Qaidam basin. These phase velocity maps could be used to construct 3D shear-wave velocity and radial seismic anisotropy models of the crust and upper mantle down to 250 km across the eastern and central Tibetan plateau.


2019 ◽  
Vol 124 (3) ◽  
pp. 2920-2940 ◽  
Author(s):  
J. E. Martins ◽  
E. Ruigrok ◽  
D. Draganov ◽  
A. Hooper ◽  
R. F. Hanssen ◽  
...  

2019 ◽  
Vol 2019 (1) ◽  
pp. 1-3
Author(s):  
Richard Lynch ◽  
Dan Hollis ◽  
John McBride ◽  
Nick Arndt ◽  
Florent Brenguier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document