scholarly journals Synoptic Sampling to Determine Distributed Groundwater-Surface Water Nitrate Loading and Removal Potential Along a Lowland River

2017 ◽  
Vol 53 (11) ◽  
pp. 9479-9495 ◽  
Author(s):  
Henry Pai ◽  
Sandra R. Villamizar ◽  
Thomas C. Harmon
2012 ◽  
Vol 41 (2) ◽  
pp. 304-313 ◽  
Author(s):  
Brian Kronvang ◽  
Joachim Audet ◽  
Annette Baattrup-Pedersen ◽  
Henning S. Jensen ◽  
Søren E. Larsen

2012 ◽  
Vol 16 (6) ◽  
pp. 1775-1792 ◽  
Author(s):  
S. Krause ◽  
T. Blume ◽  
N. J. Cassidy

Abstract. This paper investigates the patterns and controls of aquifer–river exchange in a fast-flowing lowland river by the conjunctive use of streambed temperature anomalies identified with Fibre-optic Distributed Temperature Sensing (FO-DTS) and observations of vertical hydraulic gradients (VHG). FO-DTS temperature traces along this lowland river reach reveal discrete patterns with "cold spots" indicating groundwater up-welling. In contrast to previous studies using FO-DTS for investigation of groundwater–surface water exchange, the fibre-optic cable in this study was buried in the streambed sediments, ensuring clear signals despite fast flow and high discharges. During the observed summer baseflow period, streambed temperatures in groundwater up-welling locations were found to be up to 1.5 °C lower than ambient streambed temperatures. Due to the high river flows, the cold spots were sharp and distinctly localized without measurable impact on down-stream surface water temperature. VHG patterns along the stream reach were highly variable in space, revealing strong differences even at small scales. VHG patterns alone are indicators of both, structural heterogeneity of the stream bed as well as of the spatial heterogeneity of the groundwater–surface water exchange fluxes and are thus not conclusive in their interpretation. However, in combination with the high spatial resolution FO-DTS data we were able to separate these two influences and clearly identify locations of enhanced exchange, while also obtaining information on the complex small-scale streambed transmissivity patterns responsible for the very discrete exchange patterns. The validation of the combined VHG and FO-DTS approach provides an effective strategy for analysing drivers and controls of groundwater–surface water exchange, with implications for the quantification of biogeochemical cycling and contaminant transport at aquifer–river interfaces.


2020 ◽  
Vol 47 (16) ◽  
Author(s):  
Cesar R. Castillo ◽  
İnci Güneralp ◽  
Billy Hales ◽  
Burak Güneralp

2020 ◽  
Vol 10 (4) ◽  
pp. 1281
Author(s):  
Muhammad Waseem ◽  
Frauke Kachholz ◽  
Wolfgang Klehr ◽  
Jens Tränckner

Lowland river basins are characterised by complex hydrologic and hydraulic interactions between the different subsystems (aerated zone, groundwater, surface water), which may require physically-based dynamically-coupled surface water and groundwater hydrological models to reliably describe these processes. Exemplarily, for a typical north-eastern Germany lowland catchment (Tollense river with about 400 km²), an integrated hydrological model, MIKE SHE, coupled with a hydrodynamic model, MIKE 11, was developed and assessed. Hydrological and hydraulic processes were simulated from 2010 to 2018, covering strongly varying meteorological conditions. To achieve a highly reliable model, the calibration was performed in parallel for groundwater levels and river flows at the available monitoring sites in the defined catchment. Based on sensitivity analysis, saturated hydraulic conductivity, leakage coefficients, Manning’s roughness, and boundary conditions (BCs) were used as main calibration parameters. Despite the extreme soil heterogeneity of the glacial terrain, the model performance was quite reasonable in the different sub-catchments with an error of less than 2% for water balance estimation. The resulted water balance showed a strong dependency on land use intensity and meteorological conditions. During relatively dry hydrological years, actual evapotranspiration (ETa) becomes the main water loss component, with an average of 60%–65% of total precipitation and decreases to 55%–60% during comparatively wet hydrological years during the simulation period. Base flow via subsurface and drainage flow accounts for an approximate average of 30%–35% during wet years and rises up to 35%–45% of the total water budget during the dry hydrological years. This means, groundwater is in lowland river systems the decisive compensator of varying meteorological conditions. The coupled hydrologic and hydraulic model is valuable for detailed water balance estimation and seasonal dynamics of groundwater levels and surface water discharges, and, due to its physical foundation, can be extrapolated to analyse meteorological and land use scenarios. Future work will focus on coupling with nutrient transport and river water quality models.


Author(s):  
Mateusz Grygoruk ◽  
Ewelina Szałkiewicz ◽  
Maria Grodzka-Łukaszewska ◽  
Dorota Mirosław-Świątek ◽  
Paweł Oglęcki ◽  
...  

We studied distributions and abundances of macroinvertebrates in relation to hyporheic water exchange (HWE) patterns of the upper Biebrza − a small, lowland, low dynamic European river located in Northeast Poland. On a 6-km stretch of the river; we determined the variability of water exchange in the hyporheic zone by using direct field measurements of the pressure gradient to determine groundwater–surface water interactions. We identified locations with upwelling and downwelling fluxes of HWE as well as ambiguous hydraulic contact between groundwater and surface water along the river. In these locations, we sampled bottom-dwelling macroinvertebrates. In total, 627 individuals of benthic macroinvertebrates of 34 taxa were identified. We revealed that bottom-dwelling macroinvertebrate fauna is more abundant and diverse in river stretches where water from the river infiltrates the hyporheic zone. Results also show higher taxonomic richness and abundances of benthic macroinvertebrates in stretches with diagnosed infiltrating conditions (downwelling flux in a hyporheic zone) compared to in stretches where the river drained groundwater (upwelling flux in a hyporheic zone), but the recorded differences were not statistically significant.


2012 ◽  
Vol 9 (1) ◽  
pp. 337-378 ◽  
Author(s):  
S. Krause ◽  
T. Blume ◽  
N. J. Cassidy

Abstract. This paper investigates the patterns and controls of aquifer-river exchange in a fast-flowing lowland river by the conjunctive use of streambed temperature anomalies identified with Fibre-optic Distributed Temperature Sensed (FO-DTS) and observations of vertical hydraulic gradients (VHG). FO-DTS temperature traces along this lowland river reach reveal discrete patterns with "cold spots" indicating groundwater up-welling. In contrast to previous studies using FO-DTS for investigation of groundwater-surface water exchange, the fibre-optic cable in this study was buried in the streambed sediments, ensuring clear signals despite fast flow and high discharges. During the observed summer baseflow period, streambed temperatures in groundwater up-welling locations were found to be up to 1.5 °C lower than ambient streambed temperatures. Due to the high river flows the cold spots were sharp and distinctly localized without measurable impact on downstream surface water temperature. VHG patterns along the stream reach were highly variable in space, revealing strong differences even at small scales. VHG patterns alone are indicators of both, structural heterogeneity of the stream bed as well as of the spatial heterogeneity of the groundwater-surface water exchange fluxes and are thus not conclusive in their interpretation. However, in combination with the high spatial resolution DTS data we were able to separate these two influences and clearly identify locations of enhanced exchange, while also obtaining information on the complex small-scale streambed transmissivity patterns responsible for the very discrete exchange patterns.


Author(s):  
John M. Wehrung ◽  
Richard J. Harniman

Water tables in aquifer regions of the southwest United States are dropping off at a rate which is greater than can be replaced by natural means. It is estimated that by 1985 wells will run dry in this region unless adequate artificial recharging can be accomplished. Recharging with surface water is limited by the plugging of permeable rock formations underground by clay particles and organic debris.A controlled study was initiated in which sand grains were used as the rock formation and water with known clay concentrations as the recharge media. The plugging mechanism was investigated by direct observation in the SEM of frozen hydrated sand samples from selected depths.


Sign in / Sign up

Export Citation Format

Share Document