Sensorless vector control of permanent magnetic synchronous motor with parameter error compensation

Author(s):  
Seyang Pak ◽  
Ilyong Kang
2019 ◽  
Vol 91 ◽  
pp. 01007 ◽  
Author(s):  
Ruslan Zhiligotov ◽  
Vyacheslav Shestakov ◽  
Vladymyr Sosnin ◽  
Evgeniy Popkov

The most common control system for a synchronous motor with permanent magnets is a vector control system. The construction of such a system has a number of difficulties, one of them is the need to have information about the current position of the rotor. Data on the position of the rotor can be obtained using sensors, or include a supervisor in the control system. The article describes an adaptive observer of the position and speed of the rotor of a synchronous motor with permanent magnets. This observer is used in the system of sensorless vector control of the electric drive. The presented version of the observer of the engine state is realized by creating a model in the Matlab Simulink software package. The results of experimental verification of the presented observer at the stand with the use of an engine with a power of 200 W are shown. The aim of the work is to develop an observer that is stable to changing drive parameters. This is achieved by using a relay unit in the view of the observer, which implements the slip mode.


2015 ◽  
Vol 719-720 ◽  
pp. 381-387
Author(s):  
Bo Ze Zhang ◽  
Yi Ruan

The precise speed and torque controls of Permanent Magnetic Synchronous Motor (PMSM) are usually realized by using speed or position sensor. However, the mounting of speed or position sensor requires an additional space. The cost of motor drive system with speed or position sensor is high, the reliability is low and is difficult to maintain. This paper presents one novel control strategy for PMSM sensorless vector control based on model reference adaption system(MRAS). This control strategy doesn’t need any speed or position sensor and can estimate the rotor speed with a few parameters. In this paper, PMSM itself is selected as reference model, and the mathematical model of PMSM which includes estimated parameter is regarded as adjustable model. The output error of these two models is used to drive the adaption mechanism and the estimated speed is obtained. The simulation results verify the proposed control strategy is effective, it has excellent dynamic and stable responses, the estimated speed precision is high and the system is robust.


Sign in / Sign up

Export Citation Format

Share Document