Molecular Networks in Morphologically Intact Cells and Tissue–Challenge for Biology and Drug Development

Author(s):  
Walter Schubert ◽  
Manuela Friedenberger ◽  
Marcus Bode
Author(s):  
Emanuel Gonçalves ◽  
Aldo Segura-Cabrera ◽  
Clare Pacini ◽  
Gabriele Picco ◽  
Fiona M. Behan ◽  
...  

AbstractLow success rates during drug development are due in part to the difficulty of defining drug mechanism-of-action and molecular markers of therapeutic activity. Here, we integrated 199,219 drug sensitivity measurements for 397 unique anti-cancer drugs and genome-wide CRISPR loss-of-function screens in 484 cell lines to systematically investigate in cellular drug mechanism-of-action. We observed an enrichment for positive associations between drug sensitivity and knockout of their nominal targets, and by leveraging protein-protein networks we identified pathways that mediate drug response. This revealed an unappreciated role of mitochondrial E3 ubiquitin-protein ligase MARCH5 in sensitivity to MCL1 inhibitors. We also estimated drug on-target and off-target activity, informing on specificity, potency and toxicity. Linking drug and gene dependency together with genomic datasets uncovered contexts in which molecular networks when perturbed mediate cancer cell loss-of-fitness, and thereby provide independent and orthogonal evidence of biomarkers for drug development. This study illustrates how integrating cell line drug sensitivity with CRISPR loss-of-function screens can elucidate mechanism-of-action to advance drug development.


Author(s):  
Anthony Demsey ◽  
Christopher W. Stackpole

The murine leukemia viruses are type-C oncornaviruses, and their release from the host cell involves a “budding” process in which the newly-forming, RNA-containing virus core becomes enveloped by modified cell surface membrane. Previous studies revealed that the released virions possess a dense array of 10 nm globular projections (“knobs”) on this envelope surface, and that these knobs contain a 70, 000 MW glycoprotein (gp70) of viral origin. Taking advantage of this distinctive structural formation, we have developed a procedure for freeze-drying and replication of intact cells which reveals surface detail superior to other surface replica techniques, and sufficient to detect even early stages of virus budding by localized aggregation of these knobs on the cell surface.Briefly, cells growing in monolayer are seeded onto round glass coverslips 10-12 mm in diameter. After a period of growth, cells are fixed in situ for one hour, usually with 1% OsO4 in 0. 1 M cacodylate buffer, and rinsed in distilled water.


Author(s):  
W.F. Marshall ◽  
A.F. Dernburg ◽  
B. Harmon ◽  
J.W. Sedat

Interactions between chromatin and nuclear envelope (NE) have been implicated in chromatin condensation, gene regulation, nuclear reassembly, and organization of chromosomes within the nucleus. To further investigate the physiological role played by such interactions, it will be necessary to determine which loci specifically interact with the nuclear envelope. This will not only facilitate identification of the molecular determinants of this interaction, but will also allow manipulation of the pattern of chromatin-NE interactions to probe possible functions. We have developed a microscopic approach to detect and map chromatin-NE interactions inside intact cells.Fluorescence in situ hybridization (FISH) is used to localize specific chromosomal regions within the nucleus of Drosophila embryos and anti-lamin immunofluorescence is used to detect the nuclear envelope. Widefield deconvolution microscopy is then used to obtain a three-dimensional image of the sample (Fig. 1). The nuclear surface is represented by a surface-harmonic expansion (Fig 2). A statistical test for association of the FISH spot with the surface is then performed.


Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
KM Wu ◽  
C Wu ◽  
J Dou ◽  
H Ghantous ◽  
S Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document