1980 ◽  
Vol 37 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Ra'ad M. Al-Shukry ◽  
Fadhil Jasim
Keyword(s):  
X Ray ◽  

1998 ◽  
Vol 16 (9) ◽  
pp. 733-746 ◽  
Author(s):  
Gamil A. El-Shobaky ◽  
Nagi R.E. Radwan ◽  
Farouk M. Radwan

Pure and doped Co3O4 samples were prepared by the thermal decomposition at 500–900°C of pure and lithium nitrate-treated basic cobalt carbonate. The amounts of dopant added were varied in the range 0.75–6 mol% Li2O. The effects of this treatment on the surface and catalytic properties of cobaltic oxide solid were investigated using nitrogen adsorption at −196°C and studies of the decomposition of H2O2 at 30–50°C. The results obtained revealed that Li2O doping of Co3O4 followed by heat treatment at 500°C and 600°C resulted in a progressive increase in the value of the specific surface area, SBET, to an extent proportional to the amount of dopant present. However, the increase was more pronounced in the case of solid samples calcined at 500°C. This increase in the specific surface areas has been attributed to the fixation of a portion of the dopant ions on the uppermost surface layers of the solid leading to outward growth of the surface lattice. The observed increase in SBET due to Li2O doping at 500°C might also result from a narrowing of the pores in the treated solid as a result of the doping process. Lithium oxide doping of cobaltic oxide followed by heat treatment at 700–900°C resulted in a significant decrease in the SBET, Vp and r̄ values. Pure and doped solids precalcined at 500°C and 600°C exhibited extremely high catalytic activities which were not much affected by doping with Li2O. On the other hand, doping followed by calcination at 700–900°C brought about a considerable and progressive increase in the catalytic activity of the treated solids. This treatment did not modify the activation energy of the catalysed reaction, i.e. doping of Co3O4 solid followed by heating at 700°C and 900°C did not alter the mechanism of the catalytic reaction but increased the concentration of catalytically active constituents taking part in the catalytic process without altering their energetic nature.


1958 ◽  
Vol 6 (5) ◽  
pp. 140-146 ◽  
Author(s):  
E.D. Andrews ◽  
C.E. Isaacs ◽  
R.J. Findlay
Keyword(s):  

1935 ◽  
Vol 57 (12) ◽  
pp. 2552-2553 ◽  
Author(s):  
H. Armin Pagel ◽  
William K. Noyce ◽  
Myron T. Kelley
Keyword(s):  

2003 ◽  
Vol 21 (3) ◽  
pp. 229-243 ◽  
Author(s):  
Nasr-Allah M. Deraz

The effects of calcium oxide doping (0.75, 1.5 and 3 mol% CaO) and calcination temperature (400, 500, 600 and 700°C) on different surface properties of Co3O4 were investigated. The structural properties of pure and doped oxide samples were determined by XRD methods, the textural properties were investigated via the adsorption of nitrogen at −196°C while the hydrogen peroxide decomposition activity of the investigated solids was determined by oxygen gasometric measurement of the reaction kinetics at 20–40°C. The dissolution of calcium ions in the Co3O4 lattice at temperatures in the range 400–600°C was accompanied by a marked decrease in the mean hydraulic radii (rh) and an increase in the surface area (SBET) and total pore volume (Vp) of the prepared oxide samples. In contrast, doping at 700°C brought about a decrease in the SBET and Vp values of the investigated solids. The catalytic activity for H2O2 decomposition on cobaltic oxide calcined at 400–700°C was found to decrease considerably on doping with CaO. The activation energy for sintering (ΔEs) of the pure and doped solids was determined from the variation in their SBET values as a function of the calcination temperature of these solids. Calcium oxide treatment resulted in a 50% increase in the activation energy of sintering of cobaltic oxide solid calcined at 400–600°C. This increase reflects the role of CaO doping in hindering the sintering of cobaltic oxide.


1969 ◽  
Vol 7 (24) ◽  
pp. 1793-1795 ◽  
Author(s):  
S.P. Tandon ◽  
J.P. Gupta

Sign in / Sign up

Export Citation Format

Share Document