adsorption of nitrogen
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 39)

H-INDEX

39
(FIVE YEARS 2)

Author(s):  
Idongesit Justina Mbonu ◽  
Olusegun Kehinde Abiola

Adsorption of N2 on mixed ligand benzoic acid and 1, 10-phenanthroline ligands of Mn(II) metal-organic framework (MOF)–nanoparticles were demonstrated. The adsorption capacity and pore size distribution of the synthesized MOF were conducted experimentally by measuring the N2 adsorption isotherm at 77.3 K. The resulting data were fitted to Brunauer-Emmett-Teller (BET), de Boer, Dubinin-Redusbkevich (DR), Banet-Joyner-Halenda (BJH), Horvath-Kawazoe (HK) and Density Functional Theory (DFT) models to describe the adsorptive behaviour of the synthesized nanoparticles. The DSC analysis shows the high chemical stability of this compound. The FT-IR measurement reports present the abundant of highly coordinated functional groups. And the adsorption properties evaluated by different adsorption models compared with existing adsorbent materials suggest Mn-MOF with good thermal stability, high surface area and pore openings, is a promising material for storing gases and energy because at low or high pressures, it can adsorb nitrogen gas due to its large openings.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Tingyu Fan ◽  
Miao Wang ◽  
Xingming Wang ◽  
Yingxiang Chen ◽  
Shun Wang ◽  
...  

Nitrogen and phosphorus are commonly recognized as causing eutrophication in aquatic systems, and their transport in subsurface environments has also aroused great public attention. This research presented four natural clay minerals (NCMs) evaluated for their effectiveness of NH4+ and PO43- adsorption from wastewater. All the NCMs were fully characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), BET analysis, and adsorption kinetics and isotherms to better understand the adsorption mechanism-property relationship. The results show that the adsorption efficiency of the four NCMs for phosphate was better than that for ammonia nitrogen. The removal rate of phosphate was higher than 65%, generally in the range of 80%-90%, while the removal rate of ammonia nitrogen was less than 50%. The adsorption kinetic behavior followed the pseudo-second-order kinetic model. The ammonia nitrogen adsorption isotherm was in good agreement with the Freundlich isotherm equilibrium model, and the phosphate adsorption isotherm matched the Langmuir model. Among all the NCMs studied, bentonite (7.13 mg/g) and kaolinite (5.37 mg/g) showed higher adsorption capacities for ammonia nitrogen, while zeolite (0.21 mg/g) and attapulgite (0.17 mg/g) showed higher adsorption capacities for phosphate. This study provides crucial baseline knowledge for the adsorption of nitrogen and phosphate by different kinds of NCMs.


2021 ◽  
Vol 11 (9) ◽  
Author(s):  
Nabila S. Ammar ◽  
Nady A. Fathy ◽  
Hanan S. Ibrahim ◽  
Sahar M. Mousa

AbstractModified activated carbon sorbents (ACP-Zn and ACP-Zn-Fe) had been prepared from the activation of corn husks precursor to increase the chemical activity of the resulting adsorbents by increasing the number of active functional groups and generation of micro-mesoporous structures. Fourier transform infrared (FTIR) assessed the acidic surface properties of the prepared activated carbons that is due to the presence acidic functional groups such as –OH and –COOH which improves the removal efficiency of the produced sorbents. Textural characteristics revealed the generation of micro-mesoporous structures in ACP–Zn and ACP-Zn-Fe. Thus the combination of H3PO4 with Zn or Zn–Fe could enhance the mesoporosity with a considerable decrease in the adsorption of nitrogen. However, the formation of mesopores might be attributed to the template-like effects of the obtained Zn- of Zn-Fe compounds inside the carbon structure. These structures were employed as sorbents for removal of hexavalent chromium Cr(VI) ions from its aqueous solutions, and the removal efficiency reached ~ 86% for ACP-Zn-Fe and ~ 82% for ACP-Zn. The kinetic modeling studies revealed that the sorption process follows the pseudo-second-order model which indicates that the mechanism of process is chemisorptions. Freundlich, Langmuir and Dubinin–Radushkevich (D–R) models were used to express the experimental data. The isotherm modeling studies revealed that the sorption process was fit with both Freundlich and Langmuir models with maximum capacity 24.8 and 30.3 mg/g for ACP-Zn and ACP-Zn-Fe, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuangdui Yan ◽  
Naiyu Zhang ◽  
Juan Li ◽  
Yanan Wang ◽  
Yue Liu ◽  
...  

AbstractFive coal samples obtained from Chinese coal-producing areas were oxidized by hydrogen peroxide (H2O2), and humic acids (HAs) were derived from original coal and its oxidizition samples. HAs were characterized by physical and chemical methods, between which was also comparison. Yield, ash, aromaticity, molecular weight and functional group of HAs showed variance between original coals. While, yield, molecular weight, and the quantity of oxygen-containing groups of HAs increased more from coals oxidized with H2O2. However, the increase of oxygen-containing functional groups depended on original coals. For Yimin lignite, the oxidation of H2O2 could obviously improve the carboxyl group content of HAs, thus promoting the adsorption of nitrogen. This study demonstrated that oxidation of coal by using H2O2 was one pretreatment way to obtain and modify HAs which could be used as prerequisite and functional material in agricultural field.


Author(s):  
E. A. Zuluaga-Hernandez ◽  
M. E. Mora-Ramos ◽  
E. Flórez ◽  
J. D. Correa

2021 ◽  
Vol 102 (2) ◽  
pp. 53-62
Author(s):  
E.A. Guseinova ◽  
◽  
K.Yu. Adzhamov ◽  
S.E. Yusubova ◽  
◽  
...  

A complex of modern physicochemical methods (X-ray phase analysis, low-temperature adsorption of nitrogen, scanning electron microscopy, element analysis)was used to studythe phase and texture properties of the phosphomolybdenum heteropoly acid–titanium oxide catalytic system. It was found that the optimal content of phosphomolybdenum heteropoly acid, which leads to an increase in the catalytic activity of titanium dioxide, is 7% wt.: the diisopropyl ether yield is higher,it reaches maximum values in a shorter period of time, and the samples are characterized by greater stability. It is shown that the textural characteristics of the specific surface area and dispersion are not the key factors responsible for the catalytic activity.It has been suggested that the activity of phosphomolybdenum heteropoly acid-containing samples is associated with the emergence of a new type of active centers that exhibit increased electron-donorproperties(terminal oxygen atoms of the outer frag-ments of octahedra М = О heteropolyacids). A drop in the catalytic activity of samples with a phosphomolyb-denum heteropoly acid content of more than 7% wt. associated with the formation of surface metaphosphoric acid and entails a decrease in active centers.


2021 ◽  
pp. 121891
Author(s):  
Pawel Strak ◽  
Konrad Sakowski ◽  
Jacek Piechota ◽  
Ashfaq Ahmad ◽  
Izabella Grzegory ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Leila Abylgazina ◽  
Irena Senkovska ◽  
Richard Engemann ◽  
Sebastian Ehrling ◽  
Tatiana E. Gorelik ◽  
...  

Variation of the crystallite size in flexible porous coordination polymers can significantly influence or even drastically change the flexibility characteristics. The impact of crystal morphology, however, on the dynamic properties of flexible metal-organic frameworks (MOFs) is poorly investigated so far. In the present work, we systematically modulated the particle size of a model gate pressure MOF (DUT-8(Ni), Ni2(2,6-ndc)2(dabco), 2,6-ndc−2,6-naphthalenedicarboxylate, dabco−1,4-diazabicyclo[2.2.2]octane) and investigated the influence of the aspect ratio, length, and width of anisotropically shaped crystals on the gate opening characteristics. DUT-8 is a member of the pillared-layer MOF family, showing reversible structural transition, i.e., upon nitrogen physisorption at 77 K. The framework crystalizes as rod-like shaped crystals in conventional synthesis. To understand which particular crystal surfaces dominate the phenomena observed, crystals similar in size and differing in morphology were involved in a systematic study. The analysis of the data shows that the width of the rods (corresponding to the crystallographic directions along the layer) represents a critical parameter governing the dynamic properties upon adsorption of nitrogen at 77 K. This observation is related to the anisotropy of the channel-like pore system and the nucleation mechanism of the solid-solid phase transition triggered by gas adsorption.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1736
Author(s):  
Karol Sidor ◽  
Tomasz Berniak ◽  
Piotr Łątka ◽  
Anna Rokicińska ◽  
Marek Michalik ◽  
...  

The polycondensation of resorcinol and formaldehyde in a water–ethanol mixture using the adapted Stöber method was used to obtain resol resins. An optimization of synthesis conditions and the use of an appropriate stabilizer (e.g., poly(vinyl alcohol)) resulted in spherical grains. The resins were carbonized in the temperature range of 600–1050 °C and then chemically activated in an aqueous HNO3 solution, gaseous ammonia, or by an oxidation–reduction cycle (soaking in a HNO3 solution followed by treatment with NH3). The obtained carbons were characterized by XRD, the low-temperature adsorption of nitrogen, SEM, TGA, and XPS in order to determine degree of graphitization, porosity, shape and size of particles, and surface composition, respectively. Finally, the materials were tested in phenol adsorption. The pseudo-second order model perfectly described the adsorption kinetics. A clear correlation between the micropore volume and the adsorption capacity was found. The content of graphite domains also had a positive effect on the adsorption properties. On the other hand, the presence of heteroatoms, especially oxygen groups, resulted in the clogging of the pores and a decrease in the amount of adsorbed phenol.


Sign in / Sign up

Export Citation Format

Share Document