Directed Differentiation of Human Embryonic Stem Cells as Spin Embryoid Bodies and a Description of the Hematopoietic Blast Colony Forming Assay

Author(s):  
Elizabeth S. Ng ◽  
Richard P. Davis ◽  
Tanya Hatzistavrou ◽  
Edouard G. Stanley ◽  
Andrew G. Elefanty
2006 ◽  
Vol 27 (2) ◽  
pp. 208-219 ◽  
Author(s):  
Alan Trounson

Human embryonic stem cells (hESCs) are being rapidly produced from chromosomally euploid, aneuploid, and mutant human embryos that are available from in vitro fertilization clinics treating patients for infertility or preimplantation genetic diagnosis. These hESC lines are an important resource for functional genomics, drug screening, and, perhaps eventually, cell and gene therapy. The methods for deriving hESCs are well established and repeatable and are relatively successful with a ratio of 1:10 to 1:2 new hESC lines produced from 4- to 8-d-old morula and blastocysts and from isolated inner cell mass cell clusters of human blastocysts. The hESCs can be formed and maintained on human somatic cells in humanized serum-free culture conditions and for several passages in cell-free culture systems. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in vitro while maintaining their original karyotype and epigenetic status, but this needs to be confirmed from time to time in long-term cultures. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating flat attachment cultures and unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes, and characteristic morphology, and the cells thereafter enriched for progenitor types and further culture to more mature cell types. Directed differentiation systems are well developed for ectodermal pathways that result in neural and glial cells and the mesendodermal pathway for cardiac muscle cells and many other cell types including hematopoietic progenitors and endothelial cells. Directed differentiation into endoderm has been more difficult to achieve, perhaps because of the lack of markers of early progenitors in this lineage. There are reports of enriched cultures of keratinocytes, pigmented retinal epithelium, neural crest cells and motor neurons, hepatic progenitors, and cells that have some markers of gut tissue and pancreatic islet-like cells. The prospects for use of hESC derivatives in regenerative medicine are significant, and there is much optimism for their potential contributions to human regenerative medicine.


2011 ◽  
Vol 20 (11) ◽  
pp. 1925-1935 ◽  
Author(s):  
Jung Mo Kim ◽  
Sung-Hwan Moon ◽  
Sung Geum Lee ◽  
Youn Jeong Cho ◽  
Ki Sung Hong ◽  
...  

2021 ◽  
Author(s):  
Luciana Isaja ◽  
Sofía Luján Ferriol-Laffouillere ◽  
Sofía Mucci ◽  
María Soledad Rodríguez-Varela ◽  
Leonardo Romorini

2007 ◽  
pp. 249-271
Author(s):  
Jeffrey M. Karp ◽  
Alborz Mahdavi ◽  
Lino S. Ferreira ◽  
Ali Khademhosseini ◽  
Robert Langer

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Selami Demirci ◽  
Juan J. Haro-Mora ◽  
Alexis Leonard ◽  
Claire Drysdale ◽  
Daniela Malide ◽  
...  

Abstract Background Ex vivo production of hematopoietic stem/precursor cells (HSPCs) represents a promising versatile approach for blood disorders. Methods To derive definitive HSPCs from human embryonic stem cells (ESCs), we differentiated mesodermally specified embryoid bodies (EBs) on gelatin-coated plates in serum/feeder-free conditions. Results Seven-day EB maturation followed by an 8-day differentiation period on OP9 cells provided the highest number of definitive (CD34+ CD235a−, 69%, p < 0.01) and lowest number of primitive (CD34− CD235a+, 1.55%, p < 0.01) precursor cells along with the highest colony-forming units (149.8 ± 11.6, p < 0.01) in feeder-free conditions. Maximal HSPC fraction (CD34+ CD38− CD45RA− CD49f+ CD90+) was 7.6–8.9% after 10 days of hematopoietic differentiation with 14.5% adult β-globin expression following RBC differentiation. Myeloid and erythroid colonies were restricted strictly to the CD34+ CD43+ fraction (370.5 ± 65.7, p < 0.001), while the CD34− CD43+ fraction produced only a small number of colonies (21.6 ± 11.9). In addition, we differentiated the CD34+ CD43+ cells towards T-lymphocytes using the OP9/DLL1 co-culture system demonstrating double-positive T cells (CD4+ CD8+) with CD3+ expression displaying a broad T cell receptor (TCR) repertoire. Confocal imaging of organoid-like structures revealed a close association of CD31+ cells with CD34+ and CD43+ cells, suggesting a potential emergence of HSPCs through endothelial to hematopoietic transition. Furthermore, fluorescently labeled organoids exhibited the emergence of spherical non-attached cells from rare progenitors at the border of the organoid center. Conclusions In summary, definitive HSPCs can be derived from ESCs through a dynamic cellular process from an organoid-like structure, where erythroid progeny are capable of producing adult hemoglobin and lymphoid progeny shows a diverse TCR repertoire.


2000 ◽  
Vol 6 (2) ◽  
pp. 88-95 ◽  
Author(s):  
Joseph Itskovitz-Eldor ◽  
Maya Schuldiner ◽  
Dorit Karsenti ◽  
Amir Eden ◽  
Ofra Yanuka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document