scholarly journals Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0133238 ◽  
Author(s):  
Esther L. Calderon-Gierszal ◽  
Gail S. Prins
2006 ◽  
Vol 27 (2) ◽  
pp. 208-219 ◽  
Author(s):  
Alan Trounson

Human embryonic stem cells (hESCs) are being rapidly produced from chromosomally euploid, aneuploid, and mutant human embryos that are available from in vitro fertilization clinics treating patients for infertility or preimplantation genetic diagnosis. These hESC lines are an important resource for functional genomics, drug screening, and, perhaps eventually, cell and gene therapy. The methods for deriving hESCs are well established and repeatable and are relatively successful with a ratio of 1:10 to 1:2 new hESC lines produced from 4- to 8-d-old morula and blastocysts and from isolated inner cell mass cell clusters of human blastocysts. The hESCs can be formed and maintained on human somatic cells in humanized serum-free culture conditions and for several passages in cell-free culture systems. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in vitro while maintaining their original karyotype and epigenetic status, but this needs to be confirmed from time to time in long-term cultures. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating flat attachment cultures and unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes, and characteristic morphology, and the cells thereafter enriched for progenitor types and further culture to more mature cell types. Directed differentiation systems are well developed for ectodermal pathways that result in neural and glial cells and the mesendodermal pathway for cardiac muscle cells and many other cell types including hematopoietic progenitors and endothelial cells. Directed differentiation into endoderm has been more difficult to achieve, perhaps because of the lack of markers of early progenitors in this lineage. There are reports of enriched cultures of keratinocytes, pigmented retinal epithelium, neural crest cells and motor neurons, hepatic progenitors, and cells that have some markers of gut tissue and pancreatic islet-like cells. The prospects for use of hESC derivatives in regenerative medicine are significant, and there is much optimism for their potential contributions to human regenerative medicine.


Author(s):  
Eun-Young Shin ◽  
Seah Park ◽  
Won Yun Choi ◽  
Dong Ryul Lee

Abstract Background: Leydig cells (LCs) are testicular somatic cells that are the major producers of testosterone in males. Testosterone is essential for male physiology and reproduction. Reduced testosterone levels lead to hypogonadism and are associated with diverse pathologies, such as neuronal dysfunction, cardiovascular disease, and metabolic syndrome. LC transplantation is a promising therapy for hypogonadism; however, the number of LCs in the testis is very rare and they do not proliferate in vitro. Therefore, there is a need for an alternative source of LCs. Methods: To develop a safer, simple, and rapid strategy to generate human LC-like cells (LLCs) from stem cells, we first performed preliminary tests under different conditions for the induction of LLCs from human CD34/CD73 double positive-testis-derived stem cells (HTSCs). Based on the embryological sequence of events, we suggested a 3-step strategy for the differentiation of human ESCs into LLCs. We generated the mesendoderm in the first stage and intermediate mesoderm (IM) in the second stage and optimized the conditions for differentiation of IM into LLCs by comparing the secreted testosterone levels of each group. Results: HTSCs and human embryonic stem cells can be directly differentiated into LLCs by defined molecular compounds within a short period. Human ESC-derived LLCs can secrete testosterone and express steroidogenic markers. Conclusion: We developed a rapid and efficient protocol for the production of LLCs from stem cells using defined molecular compounds. These findings provide a new therapeutic cell source for male hypogonadism.


2013 ◽  
Vol 14 (12) ◽  
pp. 4207-4216 ◽  
Author(s):  
Matthew Leung ◽  
Ashleigh Cooper ◽  
Soumen Jana ◽  
Ching-Ting Tsao ◽  
Timothy A. Petrie ◽  
...  

2010 ◽  
Vol 6 (2) ◽  
pp. 237-247 ◽  
Author(s):  
Elaine Vo ◽  
Donny Hanjaya-Putra ◽  
Yuanting Zha ◽  
Sravanti Kusuma ◽  
Sharon Gerecht

Sign in / Sign up

Export Citation Format

Share Document