Through Thickness Modulus (E33) of Ceramic Matrix Composites: Mechanical Test Method Development

Author(s):  
G. Ojard ◽  
T. Barnett ◽  
A. Caloraino ◽  
Y. Gowayed ◽  
U. Santhosh ◽  
...  
Author(s):  
Todd Engel

Ceramic Matrix Composite (CMC) materials are an attractive design option for various high-temperature structural applications. In particular, the use of CMC materials as a replacement for state-of-the-art nickel-based superalloys in hot gas path turbomachinery components offers the potential for significant increases in turbine system efficiencies, due largely to reductions in cooling requirements afforded by the increased temperature capabilities inherent to the ceramic material. However, two-dimensional fabric-laminated CMCs typically exhibit low tensile strengths in the thru-thickness (interlaminar) direction, and interply delamination is a concern for some targeted applications. Currently, standardized test methods only address the characterization of interlaminar tensile strengths at ambient temperatures; this is problematic given that nearly all CMCs are slated for service in high-temperature operating environments. This work addresses the development of a new test technique for the high-temperature measurement of interlaminar tensile properties in CMCs, allowing for the characterization of material properties under conditions more analogous to anticipated service environments in order to yield more robust component designs.


Author(s):  
Frank Abdi ◽  
Jalees Ahmad ◽  
Saber DorMohammadi ◽  
Cody Godines ◽  
Stephen Gonczy ◽  
...  

Ceramic matrix composite (CMC) materials are targeted for high temperature application in aircraft and power turbines, because of their low density and high-temperature thermo-mechanical properties, compared to conventional nickel super alloys. New test methods are needed for the assessment of the effects of delamination cracks on the structural integrity and life of CMC components. The ASTM C28 Fracture Toughness (Crack Growth Resistance – CGR) Working Group has drafted a standard test method for the “Mode I Interlaminar Fracture Tougness (GIc – Crack Growth Resistance) of Fiber-Reinforced Ceramic Matrix Composites (CMC) by Wedge Loading of a Double Cantilever Beam at Ambient Temperatures” The wedge loading method was developed to avoid the problems of high temperature bonding of loading blocks and hinges. The ASTM test standard details the scope, use, and application of the test method, interferences, test equipment, specimen geometry and preparation, test procedures, data interpretation and calculation, and reporting requirements for the new CMC CGR test method.


Author(s):  
Christopher D. Newton ◽  
J. Paul Jones ◽  
Louise Gale ◽  
Martin R. Bache

The complex structural architecture and inherent processing artefacts within ceramic matrix composites combine to induce inhomogeneous deformation and damage prior to ultimate failure. Sophisticated mechanical characterisation is vital in support of a fundamental understanding of deformation in ceramic matrix composites. On the component scale, “damage tolerant” design and lifing philosophies depend upon laboratory assessments of macro-scale specimens, incorporating typical fibre architectures and matrix under representative stress-strain states. Bulk measurements of strain via extensometry or even localised strain gauging will fail to characterise such inhomogeneity when performing conventional mechanical testing on laboratory scaled coupons. The current research project has, therefore, applied digital image correlation (DIC), electrical resistance monitoring and acoustic emission techniques to the room and high temperature assessment of a SiCf/SiC composite under axial fatigue loading. Data from these separate monitoring techniques plus ancillary use of X-Ray computed tomography and optical inspection were correlated to monitor the onset and progression of damage during cyclic loading.


Sign in / Sign up

Export Citation Format

Share Document