1992 ◽  
Vol 27 (10) ◽  
pp. 2811-2822 ◽  
Author(s):  
S. M. Bleay ◽  
V. D. Scott ◽  
B. Harris ◽  
R. G. Cooke ◽  
F. A. Habib

1994 ◽  
Vol 365 ◽  
Author(s):  
B.G. Nair ◽  
R.F. Cooper ◽  
J.N. Almquist ◽  
M.E. Plesha

ABSTRACTThe elevated temperature rheology of continuous SiC (Nicalon®) calcium aluminosilicate glass-ceramic matrix composites is evaluated in uniaxial compression creep experiments (-σ1 = 20-to-40 MPa; T = 1300–1320°C). The steady state strain rate is demonstrated.to be highly sensitive to the orientation of the reinforcement relative to the maximum compressional stress, with highest bulk specimen strain rates noted for conditions in vWhich the sliding between the fiber and the matrix is optimized as a kinetic flow response (i.e., a fiber orientation of approximately 40-50° from σ1). One further discovers that the temperature sensitivity (i.e., activation energy) of flow increases as the amount of interface flow/sliding increases. The experimental results suggest that the high-temperature, low-stress interface response in this composite system is related to the ductile flow of the “Planar” SiO2 reaction-layer interphase that exists (in addition to the well-recognized planar carbon interphase) in these materials. The results of these simple experiments are used to calibrate a microscale-to-macroscale rheologic model in which the fibermatrix interface is described by a viscous constitutive relationship.


2021 ◽  
Author(s):  
Shaojie Sun ◽  
Xinyu Wang ◽  
Junjie Zhou ◽  
Siqi Zhang ◽  
Kongyu Ge ◽  
...  

Abstract The application of ceramic materials is limited due to the complicated preparation process and intrinsic brittleness. In this work, a pressureless manufacturing route that enables the formation of barium aluminosilicate (BAS) glass-ceramic consisting of internal β-Sialon fibers with enhanced thermal conductivity is developed. By adjusting the carbon source content, composites with different Sialon contents can be easily fabricated. The thermal conductivity of the sample with 3.5 wt.% is improved to 5.845 W/m ∙ K with the Sialon content of 26 wt.% in the composite, which is 112.64 % higher than that of the pure BAS matrix. The theoretical models suggest that the enhanced thermal conductivity is mainly ascribed to the thermal conduction network constructed by Sialon fibers. This work provides a method with industrial application prosperity to fabricate the high temperature ceramic matrix composite of different sizes and complex shapes.


Sign in / Sign up

Export Citation Format

Share Document