fluorescence line
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 8)

H-INDEX

40
(FIVE YEARS 1)

Author(s):  
Christopher S Reynolds ◽  
Robyn N Smith ◽  
Andrew C Fabian ◽  
Yasushi Fukazawa ◽  
Erin A Kara ◽  
...  

Abstract NGC 1275 is the Brightest Cluster Galaxy (BCG) in the Perseus cluster and hosts the active galactic nucleus (AGN) that is heating the central 100 kpc of the intracluster medium (ICM) atmosphere via a regulated feedback loop. Here we use a deep (490 ks) Cycle-19 Chandra High-Energy Transmission Grating (HETG) observation of NGC 1275 to study the anatomy of this AGN. The X-ray continuum is adequately described by an unabsorbed power-law with photon index Γ ≈ 1.9, creating strong tension with the detected column of molecular gas seen via HCN and HCO+ line absorption against the parsec-scale core/jet. This tension is resolved if we permit a composite X-ray source; allowing a column of $N_H\sim 8\times 10^{22}\hbox{${\rm \, cm}^{-2}\, $}$ to cover ∼15 per cent of the X-ray emitter does produce a significant improvement in the statistical quality of the spectral fit. We suggest that the dominant unabsorbed component corresponds to the accretion disk corona, and the sub-dominant X-ray component is the jet working surface and/or jet cocoon that is expanding into clumpy molecular gas. We suggest that this may be a common occurence in BCG-AGN. We conduct a search for photoionized absorbers/winds and fail to detect such a component, ruling out columns and ionization parameters often seen in many other Seyfert galaxies. We detect the 6.4 keV iron-Kα fluorescence line seen previously by XMM-Newton and Hitomi. We describe an analysis methodology which combines dispersive HETG spectra, non-dispersive microcalorimeter spectra, and sensitive XMM-Newton/EPIC spectra in order to constrain (sub)arcsec-scale extensions of the iron-Kα emission region.


2020 ◽  
Vol 641 ◽  
pp. A65
Author(s):  
Ralf Ballhausen ◽  
Maximilian Lorenz ◽  
Felix Fürst ◽  
Katja Pottschmidt ◽  
Lia Corrales ◽  
...  

Context. With an absorption column density on the order of 1024 cm−2, IGR J16318−4848 is one of the most extreme cases of a highly obscured high mass X-ray binary. In addition to the overall continuum absorption, the source spectrum exhibits a strong iron and nickel fluorescence line complex at 6.4 keV. Previous empirical modeling of these features and comparison with radiative transfer simulations raised questions about the structure and covering fraction of the absorber and the profile of the fluorescence lines. Aims. We aim at a self-consistent description of the continuum absorption, the absorption edges, and the fluorescence lines to constrain the properties of the absorbing material, such as ionization structure and geometry. We further investigate the effects of dust absorption on the observed spectra and the possibility of fluorescence emission from dust grains. Methods. We used XMM-Newton and NuSTAR spectra to first empirically constrain the incident continuum and fluorescence lines. Next we used XSTAR to construct a customized photoionization model where we vary the ionization parameter, column density, and covering fraction. In the third step we modeled the absorption and fluorescence in a dusty olivine absorber and employed both a simple analytical model for the fluorescence line emission and a Monte Carlo simulation of radiative transfer that generates line fluxes, which are very close to the observational data. Results. Our empirical spectral modeling is in agreement with previous works. Our second model, the single gas absorber does not describe the observational data. In particular, irrespective of the ionization state or column density of the absorber, a much higher covering fraction than previously estimated is needed to produce the strong fluorescence lines and the large continuum absorption. A dusty, spherical absorber (modeled as consisting of olivine dust, although the nature of dust cannot be constrained) is able to produce the observed continuum absorption and edges. Conclusions. A dense, dusty absorber in the direct vicinity of the source consisting of dust offers a consistent description of both the strong continuum absorption and the strong emission features in the X-ray spectrum of IGR J16318−4848. In particular, for low optical depth of individual grains, which is the case for typical volume densities and grain size distribution models, the dust will contribute significantly to the fluorescence emission.


2020 ◽  
Vol 12 (15) ◽  
pp. 2437 ◽  
Author(s):  
Willibroad Gabila Buma ◽  
Sang-Il Lee

Much effort has been applied in estimating the concentrations of chlorophyll-a (Chl a) in lakes. The optical complexity and lack of in situ data complicate estimating Chl a in such water bodies. We compared four established satellite reflectance algorithms—the two-band and three-band algorithms (2BDA, 3BDA), fluorescence line height (FLH), and normalized difference chlorophyll index (NDCI)—to estimate Chl a concentration in Lake Chad. We evaluated the performance and applicability of Landsat-8 (L8) and Sentinel-2 (S2) images with the four Chl a estimation algorithms. For accuracy, we compared the concentration levels from the four algorithms to those from Worldview-3 (WV3) images. We identified two promising algorithms that could be used alongside L8 and S2 satellite images to monitor Chl a concentrations in Lake Chad. With an averaged R2 of 0.8, the 3BDA and NDCI Chl a algorithms performed accurately with S2 and L8 images. For the S2 and L8 images, 3BDA had the highest performance when compared to the WV3 estimates. We demonstrate the usefulness of sensor images in improving water quality information for areas that are difficult to access or when conventional data are limited.


Author(s):  
András Zlinszky ◽  
Gergely Padányi-Gulyás

Easy to use satellite-based water quality visualizations are needed for monitoring and understanding coastal and inland waters, but to date, no publicly accessible real-time global visualization system was in place. Here we introduce the Ulyssys Water Quality Viewer (UWQV), a Sentinel Hub EO Browser Custom script designed for qualitative views of aquatic chlorophyll and suspended sediment concentrations. The viewer avoids unmixing of the chlorophyll and suspended sediment spectral signal by visualizing these parameters together, with high concentrations of suspended sediment obscuring chlorophyll if present. Cloud masking uses the Hollstein and Braaten algorithms (existing EO Browser custom script code), additionally water surfaces are masked using the Normalized Differential Water Index. Chlorophyll is estimated using reflectance line height-based indicators such as fluorescence line height and maximum chlorophyll index. Suspended sediment is visualized based on single-band reflectances at 620 or 700 nm. Data sources are Sentinel-2 and Sentinel-3 images, allowing either 20 m spatial resolution or up to daily imaging. This visualization system is easy to operate and interpret, and combined with the data service capacity of the Sentinel Hub, it is expected that UWQV will contribute to monitoring of remote water bodies and to our overall understanding of physical limnology and aquatic ecology.


2019 ◽  
Vol 47 (11) ◽  
pp. 1857-1864
Author(s):  
Y. Umamaheswara Rao ◽  
P. V. Nagamani ◽  
N. K. Baranval ◽  
P. Rama Rao ◽  
T. D. V. Prasada Rao ◽  
...  

2019 ◽  
Vol 74 (3) ◽  
pp. 265-267
Author(s):  
Xiao-Xuan Wu ◽  
Min Cheng

AbstractA complete formula consisting of the static factor stemming from lattice thermal expansion and the dynamic factor owing to electron-phonon interaction is employed to investigate the thermal shift at near and higher than room temperature for the 7D0⟶5F0 fluorescence line in strontium tetraborate (SrB4O7):Sm2+ crystal. The static factor is gained in terms of the pressure dependence of the fluorescence line. With the aid of an approximate processing, the static parameter A (characterising the static factor) and the electron-phonon coupling parameter α’ (characterising the dynamic factor) are estimated even if there is no observed thermal shift curve from low temperature (<30 K) to near and higher than room temperature. The static factor and dynamic one in SrB4O7:Sm2+ crystal give rise to the thermal blue shift and red shift, respectively, and the total or observed thermal shift is due to the emulation between the two factors. The static factor in shift direction is contrary to and in magnitude is slightly greater than the dynamic one for the 7D0⟶5F0 line in SrB4O7:Sm2+ crystal. Thus, the observed very small thermal blue shift (which is not explained up to now) for the studied line in SrB4O7:Sm2+ crystal is rationally explained.


Sign in / Sign up

Export Citation Format

Share Document