Treatment of Endothelial Dysfunction and Atherosclerosis by Cholesterol Lowering

Author(s):  
Masanori Aikawa ◽  
Peter Libby
2016 ◽  
Vol 129 ◽  
pp. 383-388 ◽  
Author(s):  
Angelo Zinellu ◽  
Salvatore Sotgia ◽  
Arduino A. Mangoni ◽  
Elisabetta Sotgiu ◽  
Sara Ena ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1507
Author(s):  
Angela Oliveira Godoy Ilha ◽  
Valeria Sutti Nunes ◽  
Milessa Silva Afonso ◽  
Edna Regina Nakandakare ◽  
Guilherme da Silva Ferreira ◽  
...  

Experimental and clinical studies have demonstrated the effect of phytosterols (PS) on reducing plasma levels of cholesterol and LDL-c, but the effects of plant sterols beyond cholesterol-lowering are still questionable. Since inflammation and endothelial dysfunction are involved in the pathogenesis of atherosclerosis, this study aims to evaluate the effect of PS on biomarkers involved in atherosclerosis progression and whether these effects are independent of alterations in plasma LDL-c levels. Thirty-eight moderately hypercholesterolemic volunteers (58 ± 12 years; LDL-c ≥ 130 mg/dL) were randomly assigned to consume 400 mL/day of soy milk or soy milk + PS (1.6 g/day) for 4 weeks in a double-blind, placebo-controlled, cross-over study. Blood samples were collected and lipid profiles and biomarkers for inflammation and endothelial dysfunction determined. The results showed that PS treatment reduced endothelin-1 plasma concentration by 11% (p = 0.02) independently of variations in plasma levels of LDL-c. No alterations were observed regarding fibrinogen, IL-6, hs-CRP, SAA, TNFα, or VCAM-1 between placebo and PS-treated groups. Furthermore, PS reduced total plasma cholesterol concentration (−5,5%, p < 0.001), LDL-c (−6.4%, p < 0.05), triglycerides (−8.3%, p < 0.05), and apo B (−5.3%, p < 0.05), without changing HDL-c concentration (p > 0.05). Therefore, PS supplementation effectively lowers endothelin-1 independently of the reductions in plasma levels of LDL-c, contributing to the comprehension of the effect of plant sterols on endothelial function and prevention of cardiovascular diseases.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


Sign in / Sign up

Export Citation Format

Share Document