Detection and Analysis of Quorum‐Quenching Enzymes Against Acyl Homoserine Lactone Quorum‐Sensing Signals

Author(s):  
Hai‐Bao Zhang ◽  
Lian‐Hui Wang ◽  
Lian‐Hui Zhang
2003 ◽  
Vol 180 (6) ◽  
pp. 494-497 ◽  
Author(s):  
Max Teplitski ◽  
Anatol Eberhard ◽  
Matthew R. Gronquist ◽  
Mengsheng Gao ◽  
Jayne B. Robinson ◽  
...  

2010 ◽  
Vol 77 (4) ◽  
pp. 1181-1186 ◽  
Author(s):  
Filomena S. W. Ng ◽  
Daniel M. Wright ◽  
Stephen Y. K. Seah

ABSTRACTSsoPox, a bifunctional enzyme with organophosphate hydrolase andN-acyl homoserine lactonase activities from the hyperthermophilic archaeonSulfolobus solfataricus, was overexpressed and purified from recombinantPseudomonas putidaKT2440 with a yield of 9.4 mg of protein per liter of culture. The enzyme has a preference forN-acyl homoserine lactones (AHLs) with acyl chain lengths of at least 8 carbon atoms, mainly due to lowerKmvalues for these substrates. The highest specificity constant obtained was forN-3-oxo-decanoyl homoserine lactone (kcat/Km= 5.5 × 103M−1·s−1), but SsoPox can also degradeN-butyryl homoserine lactone (C4-HSL) andN-oxo-dodecanoyl homoserine lactone (oxo-C12-HSL), which are important for quorum sensing in ourPseudomonas aeruginosamodel system. WhenP. aeruginosaPAO1 cultures were grown in the presence of SsoPox-immobilized membranes, the production of C4-HSL- and oxo-C12-HSL-regulated virulence factors, elastase, protease, and pyocyanin were significantly reduced. This is the first demonstration that immobilized quorum-quenching enzymes can be used to attenuate the production of virulence factors controlled by quorum-sensing signals.


Aquaculture ◽  
2009 ◽  
Vol 288 (3-4) ◽  
pp. 233-238 ◽  
Author(s):  
Kartik Baruah ◽  
Dang T.V. Cam ◽  
Kristof Dierckens ◽  
Mathieu Wille ◽  
Tom Defoirdt ◽  
...  

2008 ◽  
Vol 74 (5) ◽  
pp. 1357-1366 ◽  
Author(s):  
Stéphane Uroz ◽  
Phil M. Oger ◽  
Emilie Chapelle ◽  
Marie-Thérèse Adeline ◽  
Denis Faure ◽  
...  

ABSTRACT A gene involved in N-acyl homoserine lactone (N-AHSL) degradation was identified by screening a genomic library of Rhodococcus erythropolis strain W2. This gene, named qsdA (for quorum-sensing signal degradation), encodes an N-AHSL lactonase unrelated to the two previously characterized N-AHSL-degrading enzymes, i.e., the lactonase AiiA and the amidohydrolase AiiD. QsdA is related to phosphotriesterases and constitutes the reference of a novel class of N-AHSL degradation enzymes. It confers the ability to inactivate N-AHSLs with an acyl chain ranging from C6 to C14, with or without substitution at carbon 3. Screening of a collection of 15 Rhodococcus strains and strains closely related to this genus clearly highlighted the relationship between the ability to degrade N-AHSLs and the presence of the qsdA gene in Rhodococcus. Bacteria harboring the qsdA gene interfere very efficiently with quorum-sensing-regulated functions, demonstrating that qsdA is a valuable tool for developing quorum-quenching procedures.


2006 ◽  
Vol 55 (12) ◽  
pp. 1751-1753 ◽  
Author(s):  
Hui Wang ◽  
Tao Cai ◽  
Mengwei Weng ◽  
Jing Zhou ◽  
Huijuan Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document