In Vitro-In Vivo Correlations of Pharmaceutical Dosage Forms

2011 ◽  
pp. 77-89
Author(s):  
Deliang Zhou ◽  
Yihong Qiu
Author(s):  
Srushti M. Tambe ◽  
Namita D. Desai

This chapter reviews various enzymes produced by the colonic microflora and their utilization in the development of pharmaceutical dosage forms to achieve colon-specific drug delivery. This chapter discusses the applications of colonic bacterial enzymes in order to surrogate colonic conditions in vivo so as to evaluate in vitro drug release from microbially triggered/enzymatically triggered colon-specific drug delivery systems. This chapter also discusses different methods to produce colonic bacterial enzymes as well as use of probiotics as a source to produce colonic bacterial enzymes.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


1990 ◽  
Vol 14 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Jerome P. Skelly ◽  
Gordon L. Amidon ◽  
William H. Barr ◽  
Leslie Z. Benet ◽  
James E. Carter ◽  
...  

2007 ◽  
Vol 30 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Rüdiger Gröning ◽  
Christina Cloer ◽  
Manolis Georgarakis ◽  
Rotraut S. Müller
Keyword(s):  

1997 ◽  
Vol 4 (4) ◽  
pp. 23-32 ◽  
Author(s):  
Henry Malinowski ◽  
Patrick Marroum ◽  
Venkata Ramana Uppoor ◽  
William Gillespie ◽  
Hae-Young Ahn ◽  
...  

2021 ◽  
Vol 24 ◽  
pp. 548-562
Author(s):  
Matthias Shona Roost ◽  
Henrike Potthast ◽  
Chantal Walther ◽  
Alfredo García-Arieta ◽  
Ivana Abalos ◽  
...  

This article describes an overview of waivers of in vivo bioequivalence studies for additional strengths in the context of the registration of modified release generic products and is a follow-up to the recent publication for the immediate release solid oral dosage forms. The current paper is based on a survey among the participating members of the Bioequivalence Working Group for Generics (BEWGG) of the International Pharmaceutical Regulators Program (IPRP) regarding this topic. Most jurisdictions consider the extrapolation of bioequivalence results obtained with one (most sensitive) strength of a product series as less straightforward for modified release products than for immediate release products. There is consensus that modified release products should demonstrate bioequivalence not only in the fasted state but also in the fed state, but differences exist regarding the necessity of additional multiple dose studies. Fundamental differences between jurisdictions are revealed regarding requirements on the quantitative composition of different strengths and the differentiation of single and multiple unit dosage forms. Differences in terms of in vitro dissolution requirements are obvious, though these are mostly related to possible additional comparative investigations rather than regarding the need for product-specific methods. As with the requirements for immediate release products, harmonization of the various regulations for modified release products is highly desirable to conduct the appropriate studies from a scientific point of view, thus ensuring therapeutic equivalence.


Sign in / Sign up

Export Citation Format

Share Document