Residual Stress Relaxation Effects on the Cracking and Wear Processes of Shot Peened Ti-6A1-4V Titanium Alloy under Fretting-Fatigue Loading

2012 ◽  
pp. 927-934
Author(s):  
R. Ferré ◽  
S. Fouvry ◽  
B. Berthel ◽  
R. Amargier ◽  
A. Ferré
Author(s):  
Erfan Maleki ◽  
Gholam Hossein Farrahi ◽  
Kazem Reza Kashyzadeh ◽  
Okan Unal ◽  
Mario Gugaliano ◽  
...  

Abstract This study investigates and compares the effects of different shot peening treatments including conventional and severe shot peening on microstructure, mechanical properties, fatigue behavior, and residual stress relaxation of AISI 1060 steel. Shot peening treatments were applied with two Almen intensities of 17 and 21 A and a wide ranges of coverage (100%–1500%). Various microstructural observations were carried out to analyze the evolution of microstructure. Microhardness, residual stress and surface roughness measurements and also axial fatigue test were performed. Moreover, the extent of the residual stress relaxation during cyclic loading was investigated by means of XRD measurements. Furthermore, numerical simulation of residual stress relaxation due to fatigue loading was carried out and validated against experimental investigations. The comparison indicated a good agreement for the surface residual stress relaxation up to 100 cycles. The experimental results indicated the efficiency of severe shot peening processes in obtaining nanostructured surface layer and achieving superior mechanical properties and fatigue behavior. Also, residual stress measurements revealed that stress relaxation started with a high rate at the initial stages of loading and gradually increased at higher number of cycles which was lower in the case of severely shot peened samples compared to the conventionally treated ones. Graphic Abstract


2011 ◽  
Vol 462-463 ◽  
pp. 912-917 ◽  
Author(s):  
Omar Suliman Zaroog ◽  
Aidy Ali ◽  
Sahari B. Barkawi

Specimens of 2024-T351 aluminium alloy under different three shot peening intensities were studied. The modifications of the surface layers of the shot peened specimens were investigated through microhardness, surface microstructure and residual stress relaxation after the first and second load cycles under two cyclic loads. No significant changes in microstructure after the three shot peeing intensities were observed with respect to untreated specimens. Rapid residual stress relaxation was observed in specimens after the first cycle. Relaxation of residual stresses occurred within first loading cycles were increased with increasing loading stress amplitude and due to quasi-static relaxation effects.


Author(s):  
Erfan Maleki ◽  
Okan Unal ◽  
Mario Guagliano ◽  
Sara Bagherifard

AbstractIn this study, the effect of kinetic energy of the shot peening process on microstructure, mechanical properties, residual stress, fatigue behavior and residual stress relaxation under fatigue loading of AISI 316L stainless steel were investigated to figure out the mechanisms of fatigue crack initiation and failure. Varieties of experiments were applied to obtain the results including microstructural observations, measurements of hardness, roughness, induced residual stress and residual stress relaxation as well as axial fatigue test. Then deep learning approach through neural networks was used for modelling of mechanical properties and fatigue behavior of shot peened material. Comprehensive parametric analyses were performed to survey the effects of different key parameters. Afterward, according to the results of neural network analysis, further experiments were performed to optimize and experimentally validate the desirable parameters. Based on the obtained results the favorable range of shot peening coverage regarding improved mechanical properties and fatigue behavior was identified as no more than 1750% considering Almen intensity of 21 A (0.001 inch). Graphic abstract


2020 ◽  
Vol 21 (5) ◽  
pp. 505
Author(s):  
Yousef Ghaderi Dehkordi ◽  
Ali Pourkamali Anaraki ◽  
Amir Reza Shahani

The prediction of residual stress relaxation is essential to assess the safety of welded components. This paper aims to study the influence of various effective parameters on residual stress relaxation under cyclic loading. In this regard, a 3D finite element modeling is performed to determine the residual stress in welded aluminum plates. The accuracy of this analysis is verified through experiment. To study the plasticity effect on stress relaxation, two plasticity models are implemented: perfect plasticity and combined isotropic-kinematic hardening. Hence, cyclic plasticity characterization of the material is specified by low cycle fatigue tests. It is found that the perfect plasticity leads to greater stress relaxation. In order to propose an accurate model to compute the residual stress relaxation, the Taguchi L18 array with four 3-level factors and one 6-level is employed. Using statistical analysis, the order of factors based on their effect on stress relaxation is determined as mean stress, stress amplitude, initial residual stress, and number of cycles. In addition, the stress relaxation increases with an increase in mean stress and stress amplitude.


2011 ◽  
Vol 462-463 ◽  
pp. 1355-1360
Author(s):  
Omar Suliman Zaroog ◽  
Aidy Ali ◽  
Sahari B. Barkawi

It is important to account for residual stress relaxation phenomenon in the design of the component. Specimens of 2024-T351 aluminium alloy were used in this study. The specimens were shot peened under three different shot peening intensities. Cyclic tests for two load magnitudes were performed for 1, 2, 10, 1000 and 10000 cycles. Residual stresses, microhardness and the cold work percentage were measured at initial state and after each loading cycle for the three shot peening intensities and for the two loads. The study revealed that most of the drop in the residual stress, microhardness and cold work happened in the first cycle are dependent on the applied load.


Sign in / Sign up

Export Citation Format

Share Document