Chemical Characteristics and Origin of Oceanic Ridge Volcanic Rocks

Author(s):  
R. Kay ◽  
N. J. Hubbard ◽  
P. W. Gast
1987 ◽  
Vol 77 (4) ◽  
pp. 361-366 ◽  
Author(s):  
R. S. Thorpe

ABSTRACTPotassium (K)-rich volcanic rocks occur within Permian sedimentary rocks in SW England and are approximately contemporaneous with the emplacement of the Cornubian granite batholith. The volcanic rocks have chemical characteristics of subduction-related magmas and may have been derived by small amounts of partial melting of heterogeneous large-ion lithophile (LIL) enriched mantle with the assemblage olivine–pyroxene–garnet–phlogopite–titanate. The LIL enrichment may have occurred during shallow or oblique subduction of oceanic lithosphere below SW England during the Devonian and Carboniferous. Such LIL-enriched mantle may have contributed some components to the Cornubian granite batholith.


The search for chemical characteristics of magma sources is usually done by analysing the magmas themselves. This indirect approach has limitations: clearly the magma has only some of the source’s characteristics. What we require are process-independent chemical characteristics, analogous to the isotopic abundance of radiogenic daughter isotopes that have been used so successfully in defining magma sources. Process-independent chemical characteristics in mid-oceanic ridge, oceanic island and island-arc basalts (m.o.r.b., o.i.b., i.a.b.) have been used to identify contrasting chemical characteristics of mantle peridotite from these three tectonically distinct regions. As an example, the abundance ratios of one group of elements (e.g. Cs, K, Rb, Ba, U, and perhaps Th) relative to another group (e.g. light r.e.e., Zr, Hf) are found to be fractionation-independent during most shallow-level basalt fractionation. These ratios are presumed to reflect the chemical characteristics of the mantle source of basalt from the three tectonic environments. In particular the ratios indicate the large cation-depleted nature of all m.o.r.b. and most o.i.b. peridotite sources. In common with many other island arcs, the abundance ratios are consistently higher in mantle under the Aleutian arc than in adjacent non-arc mantle represented by oceanic ridge, oceanic island, and back-arc basalts. The contention that subduction of sediment could result in arc mantle sources with these high ratios is substantiated by trace element analyses of Ba and Cs-rich deep sea sediments of the type that are being subducted at present at the Aleutian trench. The importance of recycling of sediment into the mantle at island arcs as an important control on the trace element (and isotopic) evolution of the mantle is indicated.


1970 ◽  
Vol 75 (8) ◽  
pp. 1585-1613 ◽  
Author(s):  
R. Kay ◽  
N. J. Hubbard ◽  
P. W. Gast

2003 ◽  
Vol 40 (3) ◽  
pp. 431-445 ◽  
Author(s):  
Charles Maurice ◽  
Don Francis ◽  
Louis Madore

Numerous small remnants of Archean greenstone belts in the Northern Superior Province (ca. 2875–2710 Ma) have chemical characteristics similar to those of the larger greenstone belts of the Southern Superior Province, and preserve direct evidence of crustal conditions prior to the major volcanic events of the late Archean (Wawa–Abitibi subprovinces; ca. 2760–2700 Ma). Three of the best preserved belts are engulfed in tonalite intrusions of the Faribault-Thury Complex (FTC) and exhibit common chemical characteristics, which may imply a similar origin. The dominant tholeiitic basalts typically have MgO contents > 7 wt.%, TiO2 < 1 wt.% and nearly flat rare-earth element (REE) patterns (La/Smn = 0.77–1.22; Gd/Ybn = 0.86–1.20). Associated komatiites have flat to depleted REE patterns (La/Smn = 0.45–0.95), high Al2O3/TiO2 (>15), low CaO/Al2O3 (<1.2), and chondritic Gd/Yb ratios similar to 2.7 Ga Al-undepleted komatiites. The trace-element ratios of komatiitic rocks are indistinguishable from those of the associated tholeiites, suggesting either a derivation from similar mantle sources or a comagmatic relationship (Nb/Thpm = 0.8–1.1; La/Cepm = 0.9–1.3; Nb/Ce = 0.7–0.9; Y/Hopm ~1; and Th/Lapm = 0.7–1.1). Numerical modelling of trace and major elements during low-pressure crystal fractionation reproduces the spectrum of both inferred liquid and cumulate compositions and is consistent with a comagmatic origin between the komatiites and tholeiites. The relatively low Nb/Th ratios of these mid-Archean volcanic rocks relative to both modern day basalts and late Archean basalts may indicate that they were derived from a mantle source that had not lost its crustal components, nor seen significant recycled oceanic crust (high Nb/Th). The extraction of continental crust from this Archean mantle source might then postdate the FTC volcanism, and may be associated with the generation of the voluminous tonalites that engulf the belts.


1988 ◽  
Vol 52 (365) ◽  
pp. 147-159 ◽  
Author(s):  
M. Qasim Jan

AbstractThe southern part of the Cretaceous Kohistan island arc is occupied by an extensive belt dominantly comprised of amphibolites. These include banded amphibolites of partly meta-volcanic parentage, and non-banded amphibolites derived from intrusive rock. In addition to being relict, banding has also been produced by shear deformation, metamorphic/metasomatic segregation and, possibly, by lit-par-lit injection of plagiogranitic material. Non-banded amphibolites also occur as retrograde products of noritic granulites forming the lopolithic Chilas complex. The chemistry of 37 rocks has been compared with those of known tectonic environments. The amphibolites have chemical characteristics similar to volcanic rocks found in island arcs and most of the analyses apparently support affinity with the calc-alkaline series. The amphibolites consist essentially of hornblende, plagioclase and/or epidote. Garnet and clinopyroxene have developed locally in rocks of appropriate bulk composition. Metamorphism may have taken place during the mid-Cretaceous under conditions of 550 to 680°C and 4.5 to 6.5 kbar PH2O. The metamorphic grade appears to increase from the centre of the southern belt toward the Chilas complex to the north and Indus-Zangbo suture (IZS) to the south. In the vicinity of the IZS, garnet-clinopyroxene ± amphibole assemblage developed locally in response to high P-T.


Lithos ◽  
2019 ◽  
Vol 326-327 ◽  
pp. 144-157 ◽  
Author(s):  
Liang-Liang Zhang ◽  
Di-Cheng Zhu ◽  
Qing Wang ◽  
Zhi-Dan Zhao ◽  
Dong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document