Wind Park Production Estimate

Author(s):  
Antonio Neiva ◽  
Vanessa Guedes ◽  
Caio Leandro Suzano Massa ◽  
Daniel Davy Bello de Freitas

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4638
Author(s):  
Simon Pratschner ◽  
Pavel Skopec ◽  
Jan Hrdlicka ◽  
Franz Winter

A revolution of the global energy industry is without an alternative to solving the climate crisis. However, renewable energy sources typically show significant seasonal and daily fluctuations. This paper provides a system concept model of a decentralized power-to-green methanol plant consisting of a biomass heating plant with a thermal input of 20 MWth. (oxyfuel or air mode), a CO2 processing unit (DeOxo reactor or MEA absorption), an alkaline electrolyzer, a methanol synthesis unit, an air separation unit and a wind park. Applying oxyfuel combustion has the potential to directly utilize O2 generated by the electrolyzer, which was analyzed by varying critical model parameters. A major objective was to determine whether applying oxyfuel combustion has a positive impact on the plant’s power-to-liquid (PtL) efficiency rate. For cases utilizing more than 70% of CO2 generated by the combustion, the oxyfuel’s O2 demand is fully covered by the electrolyzer, making oxyfuel a viable option for large scale applications. Conventional air combustion is recommended for small wind parks and scenarios using surplus electricity. Maximum PtL efficiencies of ηPtL,Oxy = 51.91% and ηPtL,Air = 54.21% can be realized. Additionally, a case study for one year of operation has been conducted yielding an annual output of about 17,000 t/a methanol and 100 GWhth./a thermal energy for an input of 50,500 t/a woodchips and a wind park size of 36 MWp.


2009 ◽  
Vol 13 (8) ◽  
pp. 2126-2133 ◽  
Author(s):  
C. Kongnam ◽  
S. Nuchprayoon ◽  
S. Premrudeepreechacharn ◽  
S. Uatrongjit

2021 ◽  
Vol 6 ◽  
pp. 40
Author(s):  
Panagiotis Triantafyllou ◽  
John K. Kaldellis

The land use limitations, especially for onshore applications, have led modern Wind Turbines (WTs) to be aggregated in wind parks under the scope of minimizing the necessary area required. Within this framework, the trustworthy prediction of the wind speed deficiency downstream the WTs' hub (known also as the “wake effect”) and the meticulous wind park micrositing are of uppermost importance for the optimized WTs siting across the available land area. In this context, substantial effort has been made by the academic and research community, contributing to the deployment of several analytical, numerical and semi-empirical wake models, attempting to estimate the wind speed values at different locations downstream a WT. The accuracy of several semi-empirical and analytical wake models, serving also as the basis for pertinent commercial software development, is investigated in the present work, by comparing their outcome with experimental data from a past research work that concerns the wake flow. The dimensionless streamwise distance (known also with the term “downstream distance”) from the WT's hub is used as benchmark in order to categorize and evaluate the calculation results. A dedicated comparison between the wind speed cases investigated is conducted, striving to properly assess the wake models' prediction accuracy. The notable findings obtained for the wake models examined designate the requirement for subsequent research to enlighten the wake effect dynamic behavior.


Sign in / Sign up

Export Citation Format

Share Document