Free Form Fabrication of Ceramics Components by Three-dimensional Stereolithography

2015 ◽  
pp. 330-351 ◽  
Author(s):  
Soshu Kirihara
Keyword(s):  
Author(s):  
Deepika Saini ◽  
Sanoj Kumar ◽  
Manoj K. Singh ◽  
Musrrat Ali

AbstractThe key job here in the presented work is to investigate the performance of Generalized Ant Colony Optimizer (GACO) model in order to evolve the shape of three dimensional free-form Non Uniform Rational B-Spline (NURBS) curve using stereo (two) views. GACO model is a blend of two well known meta-heuristic optimization algorithms known as Simple Ant Colony and Global Ant Colony Optimization algorithms. Basically, the work talks about the solution of NURBS-fitting based reconstruction process. Therefore, GACO model is used to optimize the NURBS parameters (control points and weights) by minimizing the weighted least-square errors between the data points and the fitted NURBS curve. The algorithm is applied by first assuming some pre-fixed values of NURBS parameters. The experiments clearly show that the optimization procedure is a better option in a case where good initial locations of parameters are selected. A detailed experimental analysis is given in support of our algorithm. The implemented error analysis shows that the proposed methodology perform better as compared to the conventional methods.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 399
Author(s):  
Ambuj Srivastava ◽  
Dhanusha Yesudhas ◽  
Shandar Ahmad ◽  
M. Michael Gromiha

tRNA methyltransferase 5 (Trm5) enzyme is an S-adenosyl methionine (AdoMet)-dependent methyltransferase which methylates the G37 nucleotide at the N1 atom of the tRNA. The free form of Trm5 enzyme has three intrinsically disordered regions, which are highly flexible and lack stable three-dimensional structures. These regions gain ordered structures upon the complex formation with tRNA, also called disorder-to-order transition (DOT) regions. In this study, we performed molecular dynamics (MD) simulations of archaeal Trm5 in free and complex forms and observed that the DOT residues are highly flexible in free proteins and become stable in complex structures. The energetic contributions show that DOT residues are important for stabilising the complex. The DOT1 and DOT2 are mainly observed to be important for stabilising the complex, while DOT3 is present near the active site to coordinate the interactions between methyl-donating ligands and G37 nucleotides. In addition, mutational studies on the Trm5 complex showed that the wild type is more stable than the G37A tRNA mutant complex. The loss of productive interactions upon G37A mutation drives the AdoMet ligand away from the 37th nucleotide, and Arg145 in DOT3 plays a crucial role in stabilising the ligand, as well as the G37 nucleotide, in the wild-type complex. Further, the overall energetic contribution calculated using MMPBSA corroborates that the wild-type complex has a better affinity between Trm5 and tRNA. Overall, our study reveals that targeting DOT regions for binding could improve the inhibition of Trm5.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Jian-Wei Ma ◽  
De-Ning Song ◽  
Zhen-Yuan Jia ◽  
Wen-Wen Jiang ◽  
Fu-Ji Wang ◽  
...  

To reduce the contouring errors in computer-numerical-control (CNC) contour-following tasks, the cross-coupling controller (CCC) is widely researched and used. However, most existing CCCs are well-designed for two-axis contouring and can hardly be generalized to compensate three-axis curved contour following errors. This paper proposes an equivalent-plane CCC scheme so that most of the two-axis CCCs or flexibly designed algorithms can be utilized for equal control of the three-axis contouring errors. An initial-value regeneration-based Newton method is first proposed to compute the foot point from the actual motion position to the desired contour with a high accuracy, so as to establish the equivalent plane where the estimated three-dimensional contouring-error vector is included. After that, the signed contouring error is computed in the equivalent plane, thus a typical two-axis proportional-integral-differential (PID)-based CCC is utilized for its control. Finally, the two-axis control commands generated by the typical CCC are coupled to three-axis control commands according to the geometry of the established equivalent plane. Experimental tests are conducted to verify the effectiveness of the presented method. The testing results illustrate that the proposed equivalent-plane CCC performs much better than conventional method in both error estimation and error control.


Author(s):  
Ronak R. Mohanty ◽  
Umema H. Bohari ◽  
Vinayak ◽  
Eric Ragan

We present haptics-enabled mid-air interactions for sketching collections of three-dimensional planar curves — 3D curve-soups — as a means for 3D design conceptualization. Haptics-based mid-air interactions have been extensively studied for modeling of surfaces and solids. The same is not true for modeling curves; there is little work that explores spatiality, tangibility, and kinesthetics for curve modeling, as seen from the perspective of 3D sketching for conceptualization. We study pen-based mid air interactions for free-form curve input from the perspective of manual labor, controllability, and kinesthetic feedback. For this, we implemented a simple haptics-enabled workflow for users to draw and compose collections of planar curves on a force-enabled virtual canvas. We introduce a novel force-feedback metaphor for curve drawing, and investigate three novel rotation techniques within our workflow for both controlled and free-form sketching tasks.


2011 ◽  
Vol 473 ◽  
pp. 37-42 ◽  
Author(s):  
Matthias Hermes ◽  
Daniel Staupendahl ◽  
Christoph Becker ◽  
A. Erman Tekkaya

The paper deals with two new processes and developed special machines for profile and tube bending. The first process is a new roll-based machine for three-dimensional bending of profiles with symmetrical and asymmetrical cross-sections that has been developed. Compared to conventional processes like stretch bending, the advantage of Torque Superposed Spatial (TSS) Bending is the kinematic adjustment of the bending contour, leading to higher flexibility and cost efficiency especially in small batch production. The second process is the new process of Incremental Tube Forming (ITF). This process is based on a combination of a spinning process and kinematic free form bending of tubular semi-finished products. It is suitable for bending tubes two- and three-dimensionally to arbitrary contours and for manufacturing tailored tubes. The combined spinning and bending process leads to low bending forces with the possibility of a significant springback reduction.


Author(s):  
Jingyuan Yan ◽  
Hemanth Gudapati ◽  
Yong Huang ◽  
Changxue Xu

For the free-form fabrication of various tissue constructs, three-dimensional (3D) additive printing technology has emerged as a promising approach for organ fabrication. This study aims to print a tube structure using a laser-assisted orifice-free printing technique and further investigate the effect of sodium alginate concentration on the tube wall thickness. Alginate tubes have been successfully printed. It is found that highly viscous materials can be laser printed into well-defined tube structures. A higher concentration solution such as the 8% sodium alginate solution leads to a thin wall, meaning a better resolution. Imaging analysis also illustrates that higher concentration solutions help develop smooth, slim jets upon the incidence of laser pulse.


Sign in / Sign up

Export Citation Format

Share Document