Room-Temperature Creep and Stress Relaxation in Titanium: Influence of Oxygen and Hydrogen Contents

Author(s):  
B. Barkia ◽  
V. Doquet ◽  
J.P. Couzinié ◽  
I. Guillot
Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1683 ◽  
Author(s):  
Yi Ma ◽  
Xianwei Huang ◽  
Yuxuan Song ◽  
Wei Hang ◽  
Taihua Zhang

The crystal orientation effect on mechanical heterogeneity of LiTaO3 single crystals is well known, whilst the time-dependent plastic behavior, i.e., creep is still short of understanding. Relying on nanoindentation technology, we systematically studied room-temperature creep flows at various holding depths (100 nm to 1100 nm) in three typical orientations namely the X-112°, Y-36° and Y-42° planes. Creep resistance was much stronger in the X-112° plane than the others. In the meanwhile, creep features were similar in the Y-36° and Y-42° planes. The orientation effect on creep deformation was consistent with that on hardness. The nanoindentation length scale played an important role in creep deformation that creep strains were gradually decreased with the holding depth in all the planes. Based on strain rate sensitivity and yield stress, the activation volumes of dislocation nucleation were computed at various nanoindentation depths. The activation volumes ranged from 5 Å3 to 23 Å3 for the Y-36° and Y-42° planes, indicating that a point-like defect could be the source of plastic initiation. In the X-112° plane, the activation volume was between 6 Å3 and 83 Å3. Cooperative migration of several atoms could also be the mechanism of dislocation activation at deep nanoindentation.


2014 ◽  
pp. 1221-1226 ◽  
Author(s):  
Pierre-Olivier St-Arnaud ◽  
Donald Picard ◽  
Houshang Alamdari ◽  
Donald Ziegler ◽  
Mario Fafard

2013 ◽  
Vol 68 (8) ◽  
pp. 551-554 ◽  
Author(s):  
Nikhil Karanjgaokar ◽  
Fernando Stump ◽  
Philippe Geubelle ◽  
Ioannis Chasiotis

2007 ◽  
Vol 353-358 ◽  
pp. 138-141 ◽  
Author(s):  
De Fu Nie ◽  
Jie Zhao

Fatigue crack growth (FCG) tests have been performed in an X70 steel with various microstructures (respectively in the as-received and the normalized condition). The effect of room temperature creep (RTC) on FCG behavior has been investigated by comparing with single wave overloads (SWOL). The as-received X70 pipeline steel has high FCG rate at the near-threshold region. While at the Paris region, FCG rate seems insensitive to the microstructure. In both conditions, time-dependent deformation is observed at crack tips (i.e., RTC), which increases with increasing stress-intensity-factor. And this deformation has a high value in the normalized state, under identical testing conditions. Both RTC and SWOL can bring subsequent fatigue crack growth a very short initial acceleration before deceleration, whereas the former induces more serious deceleration and retardation, which attributes to more significant crack closures.


Sign in / Sign up

Export Citation Format

Share Document