Hybrid and Multi-level Converter Topologies for On-Chip Implementation of Reduced Voltage-Swing Converters

2016 ◽  
pp. 249-283
Author(s):  
Aleksandar Prodic ◽  
Sheikh Mohammad Ahsanuzzaman ◽  
Behzad Mahdavikhah ◽  
Timothy McRae
2014 ◽  
Vol 1 (2) ◽  
pp. 166-174 ◽  
Author(s):  
Mohammad Shadab Mirza ◽  
Tufail Mohammad ◽  
Qamar Alam ◽  
Mohammad Ariffuddin Mallick

2012 ◽  
Vol 201-202 ◽  
pp. 95-98
Author(s):  
Yan Xie ◽  
Bo Chao Chen ◽  
Yao Jun Chen

The multi-level converter is one of the focuses in the current high-voltage high-power field of power conversion, and is found widely application in high power drive system. It generated so far for nearly three decades of history. During this period a large number of multi-level topology appeared, there are three most commonly used, which are diode clamped, capacitor and cascaded H-bridge. In this paper, the development of the multi-level converter is reviewed. The structure of three multi-level converter topologies are given, and then their advantages and disadvantages are given by analyzing and comparing their characteristics. Finally, a new modular multi-level converter (MMC) is introduced which is one of research focus of multi-level converter field at present. Its structure and working principle are described in detail. Multi-level converters will continue to be developed to meet the demand of high-voltage and high power applications.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4092
Author(s):  
Grzegorz Blakiewicz ◽  
Jacek Jakusz ◽  
Waldemar Jendernalik

This paper examines the suitability of selected configurations of ultra-low voltage (ULV) oscillators as starters for a voltage boost converter to harvest energy from a thermoelectric generator (TEG). Important properties of particularly promising configurations, suitable for on-chip implementation are compared. On this basis, an improved oscillator with a low startup voltage and a high output voltage swing is proposed. The applicability of n-channel native MOS transistors with negative or near-zero threshold voltage in ULV oscillators is analyzed. The results demonstrate that a near-zero threshold voltage transistor operating in the weak inversion region is most advantageous for the considered application. The obtained results were used as a reference for design of a boost converter starter intended for integration in 180-nm CMOS X-FAB technology. In the selected technology, the most suitable transistor available with a negative threshold voltage was used. Despite using a transistor with a negative threshold voltage, a low startup voltage of 29 mV, a power consumption of 70 µW, and power conversion efficiency of about 1.5% were achieved. A great advantage of the proposed starter is that it eliminates a multistage charge pump necessary to obtain a voltage of sufficient value to supply the boost converter control circuit.


Sign in / Sign up

Export Citation Format

Share Document